Skip to main content
×
×
Home

CANCELLATIVE AND MALCEV PRESENTATIONS FOR FINITE REES INDEX SUBSEMIGROUPS AND EXTENSIONS

  • ALAN J. CAIN (a1), EDMUND F. ROBERTSON (a2) and NIK RUŠKUC (a3)
Abstract
Abstract

It is known that, for semigroups, the property of admitting a finite presentation is preserved on passing to subsemigroups and extensions of finite Rees index. The present paper shows that the same holds true for Malcev, cancellative, left-cancellative and right-cancellative presentations. (A Malcev (respectively, cancellative, left-cancellative, right-cancellative) presentation is a presentation of a special type that can be used to define any group-embeddable (respectively, cancellative, left-cancellative, right-cancellative) semigroup.)

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      CANCELLATIVE AND MALCEV PRESENTATIONS FOR FINITE REES INDEX SUBSEMIGROUPS AND EXTENSIONS
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      CANCELLATIVE AND MALCEV PRESENTATIONS FOR FINITE REES INDEX SUBSEMIGROUPS AND EXTENSIONS
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      CANCELLATIVE AND MALCEV PRESENTATIONS FOR FINITE REES INDEX SUBSEMIGROUPS AND EXTENSIONS
      Available formats
      ×
Copyright
Corresponding author
For correspondence; e-mail: nik@mcs.st-and.ac.uk
References
Hide All
[1]Adjan S. I., ‘Defining relations and algorithmic problems for groups and semigroups’, Tr. Mat. Inst. Steklova 85 (1966) (in Russian. See [2] for a translation).
[2]Adjan S. I., ‘Defining relations and algorithmic problems for groups and semigroups’, P. Steklov Inst. Math. 85 (1966) (translated from the Russian by M. Greendlinger).
[3]Araújo I. M., Silva P. V. and Ruškuc N., ‘Presentations for inverse subsemigroups with finite complement’, submitted.
[4]Cain A. J., ‘Presentations for subsemigroups of groups’, PhD Thesis, University of St Andrews, 2005. http://www-groups.mcs.st-and.ac.uk/∼alanc/publications/c_phdthesis/c_phdthesis.pdf.
[5]Cain A. J., ‘Malcev presentations for subsemigroups of direct products of coherent groups’, J. Pure Appl. Algebra, to appear.
[6]Cain A. J., ‘Automatism of subsemigroups of Baumslag–Solitar semigroups’, submitted.
[7]Cain A. J., ‘Malcev presentations for subsemigroups of groups—a survey’, in: Groups St Andrews 2005, Vol. 1, London Mathematical Society Lecture Note Series, 339 (eds. C. M. Campbell, M. Quick, E. F. Robertson and G. C. Smith) (Cambridge University Press, Cambridge, 2007),pp. 256268.
[8]Cain A. J., Robertson E. F. and Ruškuc N., ‘Subsemigroups of groups: presentations, Malcev presentations, and automatic structures’, J. Group Theory 9 (2006), 397426.
[9]Cain A. J., Robertson E. F. and Ruškuc N., ‘Subsemigroups of virtually free groups: finite Malcev presentations and testing for freeness’, Math. Proc. Cambridge Philos. Soc. 141 (2006), 5766.
[10]Campbell C. M., Robertson E. F., Ruškuc N. and Thomas R. M., ‘Reidemeister–Schreier type rewriting for semigroups’, Semigroup Forum 51 (1995), 4762.
[11]Clifford A. H. and Preston G. B., The algebraic theory of semigroups, Vol. I, Mathematical Surveys, 7 (American Mathematical Society, Providence, RI, 1961).
[12]Clifford A. H. and Preston G. B., The algebraic theory of semigroups, Vol. II, Mathematical Surveys, 7 (American Mathematical Society, Providence, RI, 1967).
[13]Croisot R., ‘Automorphismes intérieurs d’un semi-groupe’, Bull. Soc. Math. France 82 (1954), 161194 (in French).
[14]Epstein D. B. A., Cannon J. W., Holt D. F., Levy S. V. F., Paterson M. S. and Thurston W. P., Word processing in groups (Jones & Bartlett, Boston, MA, 1992).
[15]Higgins P. M., Techniques of semigroup theory (Clarendon Press, Oxford University Press, New York, 1992).
[16]Howie J. M., Fundamentals of semigroup theory, London Mathematical Society Monographs, 12 (New Series) (Clarendon Press, Oxford University Press, New York, 1995).
[17]Jura A., ‘Determining ideals of a given finite index in a finitely presented semigroup’, Demonstratio Math. 11 (1978), 813827.
[18]Lyndon R. C. and Schupp P. E., Combinatorial group theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 89 (Springer, Berlin, 1977).
[19]Malcev A. I., ‘On the immersion of associative systems in groups’, Mat. Sbornik 6 (1939), 331336 (in Russian).
[20]Ruškuc N., ‘Semigroup presentations’, PhD Thesis, University of St Andrews, 1995. http://turnbull.mcs.st-and.ac.uk/∼nik/Papers/thesis.ps.
[21]Ruškuc N., ‘On large subsemigroups and finiteness conditions of semigroups’, Proc. London Math. Soc. (3) 76 (1998), 383405.
[22]Spehner J.-C., ‘Présentations et présentations simplifiables d’un monoïde simplifiable’, Semigroup Forum 14 (1977), 295329 (in French).
[23]Spehner J.-C., ‘Every finitely generated submonoid of a free monoid has a finite Malcev’s presentation’, J. Pure Appl. Algebra 58 (1989), 279287.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the Australian Mathematical Society
  • ISSN: 1446-7887
  • EISSN: 1446-8107
  • URL: /core/journals/journal-of-the-australian-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 39 *
Loading metrics...

Abstract views

Total abstract views: 31 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st January 2018. This data will be updated every 24 hours.