Skip to main content


  • Samik Basu (a1), Steffen Sagave (a2) and Christian Schlichtkrull (a3)

We develop a theory of $R$ -module Thom spectra for a commutative symmetric ring spectrum $R$ and we analyze their multiplicative properties. As an interesting source of examples, we show that $R$ -algebra Thom spectra associated to the special unitary groups can be described in terms of quotient constructions on $R$ . We apply the general theory to obtain a description of the $R$ -based topological Hochschild homology associated to an $R$ -algebra Thom spectrum.

Hide All
1. Adams, J. F., Stable Homotopy and Generalised Homology, Chicago Lectures in Mathematics (University of Chicago Press, Chicago, IL, 1995). Reprint of the 1974 original.
2. Ando, M., Blumberg, A. J., Gepner, D., Hopkins, M. J. and Rezk, C., An -categorical approach to R-line bundles, R-module Thom spectra, and twisted R-homology, J. Topol. 7(3) (2014), 869893.
3. Ando, M., Blumberg, A. J., Gepner, D., Hopkins, M. J. and Rezk, C., Units of ring spectra, orientations and Thom spectra via rigid infinite loop space theory, J. Topol. 7(4) (2014), 10771117.
4. Angeltveit, V., Topological Hochschild homology and cohomology of A ring spectra, Geom. Topol. 12(2) (2008), 9871032.
5. Basterra, M. and Mandell, M. A., Homology and cohomology of E ring spectra, Math. Z. 249(4) (2005), 903944.
6. Basu, S., Topological Hochschild homology of K/p as a K p module, Homology Homotopy Appl. 19(1) (2017), 253280.
7. Basu, S. and Schlichtkrull, C., Topological Hochschild homology of quotients via generalized Thom spectra. In preparation.
8. Blumberg, A. J., Cohen, R. L. and Schlichtkrull, C., Topological Hochschild homology of Thom spectra and the free loop space, Geom. Topol. 14(2) (2010), 11651242.
9. Bousfield, A. K. and Kan, D. M., Homotopy Limits, Completions and Localizations, Lecture Notes in Mathematics, Volume 304 (Springer, Berlin–New York, 1972).
10. Brun, M., Dundas, B. I. and Stolz, M., Equivariant structure on smash powers, preprint, 2016, arXiv:1604.05939.
11. Elmendorf, A. D., Kriz, I., Mandell, M. A. and May, J. P., Rings, Modules, and Algebras in Stable Homotopy Theory, Mathematical Surveys and Monographs, vol. 47 (American Mathematical Society, Providence, RI, 1997). With an appendix by M. Cole.
12. Fiedorowicz, Z., Classifying spaces of topological monoids and categories, Amer. J. Math. 106(2) (1984), 301350.
13. Goerss, P. G. and Hopkins, M. J., Moduli spaces of commutative ring spectra, in Structured Ring Spectra, London Mathematical Society Lecture Note Series, Volume 315, pp. 151200 (Cambridge University Press, Cambridge, 2004).
14. Hopkins, M. J. and Lurie, J., On Brauer groups of Lubin–Tate spectra I, preprint, 2017, available at∼lurie/.
15. Hovey, M., Model Categories, Mathematical Surveys and Monographs, Volume 63 (American Mathematical Society, Providence, RI, 1999).
16. Hovey, M., Shipley, B. and Smith, J., Symmetric spectra, J. Amer. Math. Soc. 13(1) (2000), 149208.
17. Lewis, L. G. Jr., When is the natural map X→𝛺𝛴X a cofibration? Trans. Amer. Math. Soc. 273(1) (1982), 147155.
18. Lewis, L. G. Jr., May, J. P., Steinberger, M. and McClure, J. E., Equivariant Stable Homotopy Theory, Lecture Notes in Mathematics, Volume 1213 (Springer, Berlin, 1986). With contributions by J. E. McClure.
19. Lind, J. A., Diagram spaces, diagram spectra and spectra of units, Algebr. Geom. Topol. 13(4) (2013), 18571935.
20. Mandell, M. A., May, J. P., Schwede, S. and Shipley, B., Model categories of diagram spectra, Proc. Lond. Math. Soc. (3) 82(2) (2001), 441512.
21. May, J. P., The Geometry of Iterated Loop Spaces, Lectures Notes in Mathematics, Volume 271 (Springer, Berlin–New York, 1972).
22. May, J. P., Classifying spaces and fibrations, Mem. Amer. Math. Soc. 1(1) (1975), 155. xiii+98.
23. May, J. P., E Ring Spaces and E Ring Spectra, Lecture Notes in Mathematics, Volume 577 (Springer, Berlin–New York, 1977). With contributions by Frank Quinn, Nigel Ray, and Jørgen Tornehave.
24. Rognes, J., Sagave, S. and Schlichtkrull, C., Localization sequences for logarithmic topological Hochschild homology, Math. Ann. 363(3–4) (2015), 13491398.
25. Sagave, S. and Schlichtkrull, C., Diagram spaces and symmetric spectra, Adv. Math. 231(3–4) (2012), 21162193.
26. Sagave, S. and Schlichtkrull, C., Group completion and units in I-spaces, Algebr. Geom. Topol. 13 (2013), 625686.
27. Sagave, S. and Schlichtkrull, C., Topological André–Quillen homology of generalized Thom spectra. In preparation.
28. Schlichtkrull, C., Units of ring spectra and their traces in algebraic K-theory, Geom. Topol. 8 (2004), 645673. (electronic).
29. Schlichtkrull, C., Thom spectra that are symmetric spectra, Doc. Math. 14 (2009), 699748.
30. Schwede, S., Symmetric spectra, 2012, Book project, available at the author’s home page.
31. Schwede, S. and Shipley, B. E., Algebras and modules in monoidal model categories, Proc. Lond. Math. Soc. (3) 80(2) (2000), 491511.
32. Shipley, B., Symmetric spectra and topological Hochschild homology, K-Theory 19(2) (2000), 155183.
33. Shipley, B., A convenient model category for commutative ring spectra, in Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic K-Theory, Contemporary Mathematics, Volume 346, pp. 473483 (American Mathematical Society, Providence, RI, 2004).
34. Steenrod, N. E., A convenient category of topological spaces, Michigan Math. J. 14 (1967), 133152.
35. Whitehead, G. W., Elements of Homotopy Theory, Graduate Texts in Mathematics, Volume 61 (Springer, New York–Berlin, 1978).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the Institute of Mathematics of Jussieu
  • ISSN: 1474-7480
  • EISSN: 1475-3030
  • URL: /core/journals/journal-of-the-institute-of-mathematics-of-jussieu
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed