Hostname: page-component-6b989bf9dc-pmhlf Total loading time: 0 Render date: 2024-04-12T02:33:54.979Z Has data issue: false hasContentIssue false

Normative Data for the ELSA-Brasil Neuropsychological Assessment and Operationalized Criterion for Cognitive Impairment for Middle-Aged and Older Adults

Published online by Cambridge University Press:  14 October 2020

Laiss Bertola*
Affiliation:
University of São Paulo Medical School, Av. Dr. Arnaldo, 455 – Cerqueira César, São Paulo, SP01246-903, Brazil
Isabela M. Benseñor
Affiliation:
Epidemiological and Clinical Research Center, University Hospital, University of São Paulo, São Paulo, SP01246-903, Brazil Department of Internal Medicine, University of Sao Paulo Medical School, Av. Dr. Arnaldo, 455 – Cerqueira César, São Paulo, SP01246-903, Brazil
Alessandra C. Goulart
Affiliation:
Center for Clinical and Epidemiological Research, Hospital Universitário, Universidade de São Paulo, São Paulo, SP01246-903, Brazil
Andre R. Brunoni
Affiliation:
Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP01246-903, Brazil Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP01246-903, Brazil Center for Clinical and Epidemiological Research, Hospital Universitário, Universidade de São Paulo, São Paulo, SP01246-903, Brazil
Paulo Caramelli
Affiliation:
Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG30130-100, Brazil. E-mail: caramelli@ufmg.br
Sandhi Maria Barreto
Affiliation:
Medical School & Clinical Hospital. Federal University of Minas Gerais, Av. Prof. Alfredo Balena, 190 – Santa Efigênia, Belo Horizonte, MG30130-100, Brazil
Luana Giatti
Affiliation:
Departamento de Medicina Preventiva e Social da Faculdade de Medicina da Universidade Federal de Minas Gerais (UFMG), Av. Prof. Alfredo Balena, 190 – Santa Efigênia, Belo Horizonte, MG30130-100, Brazil
Larissa Salvador
Affiliation:
Programa de Pós-Graduação em Ciências Aplicadas à Saúde do Adulto/Faculdade de Medicina, UFMG, Belo Horizonte, MG30130-310, Brazil
Rosane Harter Griep
Affiliation:
Laboratory of Health and Environment Education, Oswaldo Cruz Institute, Rio de Janeiro, RJ21040-360, Brazil
Arlinda B. Moreno
Affiliation:
Department of Epidemiology and Quantitative Methods in Health, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro, RJ21040-360, Brazil
Paulo A. Lotufo
Affiliation:
Epidemiological and Clinical Research Center, University Hospital, University of São Paulo, São Paulo, SP01246-903, Brazil Department of Internal Medicine, University of Sao Paulo Medical School, Av. Dr. Arnaldo, 455 – Cerqueira César, São Paulo, SP01246-903, Brazil
Claudia K. Suemoto
Affiliation:
Division of Geriatrics, University of Sao Paulo Medical School, Av. Dr. Arnaldo, 455 – Cerqueira César, São Paulo, SP01246-903, Brazil E-mail: cksuemoto@usp.br
*
*Correspondence and reprint requests to: Laiss Bertola, University of São Paulo Medical School, Av. Dr. Arnaldo, 455 – Cerqueira César, São Paulo, SP01246-903, Brazil. E-mail: laissbertola@gmail.com

Abstract

Objectives:

Normative data should consider sociodemographic diversity for the accurate diagnosis of cognitive impairment. This study aims to provide normative data for a brief neuropsychological battery and present diagnostic criteria for cognitive impairment that could be used in primary care settings.

Methods:

We selected 9618 Brazilian middle-aged and older adults after detailed exclusion criteria to avoid subtle cognitive impairment. We analyzed age, sex, and education influence on cognitive performance. To verify the evidence of criterion validity, we compared the cognitive performance of subjects with and without a depressive episode. Additionally, we verified the percentage of spurious scores under three different cutoffs.

Results:

Age and education had the greatest impact on cognition. Normative scores were provided according to age and education groups. Participants with a depressive episode performed poorer than control subjects. The clinical cutoff of at least two scores below the 7th percentile revealed the adequate percentage of spurious and possible clinical performance.

Conclusions:

The Longitudinal Study on Adult Health (ELSA-Brasil) provided normative data based on a unique selected set of cognitively normal subjects. Normative groups were selected based on age and education, and the battery was sensitive to the presence of a depressive episode. We suggested clinical cutoffs for the tests in this battery that could be used in primary care settings to improve the accurate diagnosis of cognitive impairment.

Type
Regular Research
Copyright
Copyright © INS. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alzheimer’s Disease International. (2015). World Alzheimer Report. London: Alzheimer’s Disease International.Google Scholar
Aquino, E.M.L., Barreto, S.M., Bensenor, I.M., Carvalho, M.S., Chor, D., Duncan, B.B., … Szklo, M. (2012). Brazilian Longitudinal Study of Adult health (ELSA-Brasil): objectives and design. American Journal of Epidemiology, 175(4), 315324. doi: 10.1093/aje/kwr294 CrossRefGoogle ScholarPubMed
Batista, J.A., Giatti, L., Barreto, S.M., Galery, A.R.P., & Passos, V.M.D.A. (2013). Reliability of cognitive tests of ELSA-Brasil, the Brazilian Longitudinal Study of Adult Health. Dementia & Neuropsychologia, 7, 367373.CrossRefGoogle ScholarPubMed
Beeri, M.S., Schmeidler, J., Sano, M., Wang, J., Lally, R., Grossman, H., & Silverman, J.M. (2006). Age, gender, and education norms on the CERAD neuropsychological battery in the oldest old. Neurology, 67(6), 10061010. doi: 10.1212/01.wnl.0000237548.15734.cd CrossRefGoogle ScholarPubMed
Bertola, L., Benseñor, I.M., Barreto, S.M., Moreno, A.B., Griep, R.H., Vianna, M.C., … Suemoto, C.K. (2020). Measurement invariance of neuropsychological tests across different sociodemographic backgrounds in the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Neuropsychology, 34(2), 227234. doi: 10.1037/neu0000597 CrossRefGoogle Scholar
Bertolucci, P.H.F., Okamoto, I.H., Brucki, S.M.D., Siviero, M.O., Neto, J.T., & Ramos, L.R. (2001). Applicability of the CERAD neuropsychological battery to Brazilian elderly. Arquivos de Neuro-Psiquiatria, 59(3 A), 532536. doi: 10.1590/S0004-282X2001000400009 CrossRefGoogle ScholarPubMed
Binder, L.M., Iverson, G.L., & Brooks, B.L. (2009). To err is human: “abnormal” Neuropsychological scores and variability are common in healthy adults. Archives of Clinical Neuropsychology, 24(1), 3146. doi: 10.1093/arclin/acn001 CrossRefGoogle Scholar
Brucki, S.M., Malheiros, S.M., Okamoto, I.H., & Bertolucci, P.H. (1997). Normative data on the verbal fluency test in the animal category in our milieu. Arquivos de neuro-psiquiatria, 55(1), 5661. doi: 10.1590/S0004-282X1997000100009 CrossRefGoogle ScholarPubMed
Brunoni, A.R., Szlejf, C., Suemoto, C.K., Santos, I.S., Goulart, A.C., Viana, M.C., … Benseñor, I.M. (2019). Association between ideal cardiovascular health and depression incidence: a longitudinal analysis of ELSA-Brasil. Acta Psychiatrica Scandinavica, 140(6), 111. doi: 10.1111/acps.13109 CrossRefGoogle ScholarPubMed
De Santi, S., Pirraglia, E., Barr, W., Babb, J., Williams, S., Rogers, K., … de Leon, M.J. (2008). Robust and conventional neuropsychological norms: diagnosis and prediction of age-related cognitive decline. Neuropsychology, 22(4), 469484. doi: 10.1037/0894-4105.22.4.469 CrossRefGoogle ScholarPubMed
Diniz, B.S.O., Yassuda, M.S., Nunes, P.V., Radanovic, M., & Forlenza, O.V. (2007). Mini-mental State Examination performance in mild cognitive impairment subtypes. International Psychogeriatrics, 19(4), 647656. doi: 10.1017/S104161020700542X CrossRefGoogle ScholarPubMed
Fichman, H.C., Fernandes, C.S., Nitrini, R., Lourenço, R.A., Paradela, E.M.D.P., Carthery-Goulart, M.T., & Caramelli, P. (2009). Age and educational level effects on the performance of normal elderly on category verbal fluency tasks. Dementia & Neuropsychologia, 3(1), 4954. doi: 10.1590/S1980-57642009DN30100010 CrossRefGoogle ScholarPubMed
Franco-Marina, F., García-González, J.J., Wagner-Echeagaray, F., Gallo, J., Ugalde, O., Sánchez-García, S., … García-Peña, C. (2010). The Mini-mental State Examination revisited: ceiling and floor effects after score adjustment for educational level in an aging Mexican population. International Psychogeriatrics, 22(1), 7281. doi: 10.1017/S1041610209990822 CrossRefGoogle Scholar
Hamdan, A.C., & Hamdan, E.M.L.R. (2009). Effects of age and education level on the Trail Making Test in a healthy Brazilian sample. Psychology & Neuroscience, 2(2), 199203. doi: 10.3922/j.psns.2009.2.012 CrossRefGoogle Scholar
Harrington, K.D., Lim, Y.Y., Ames, D., Hassenstab, J., Rainey-Smith, S., Robertson, J., … Group, A.R. (2017). Using robust normative data to investigate the neuropsychology of cognitive aging. Arch Clin Neuropsychol, 32(2), 142154. doi: 10.1093/arclin/acw106 CrossRefGoogle ScholarPubMed
Hartshorne, J.K., & Germine, L.T. (2015). When does cognitive functioning peak? The asynchronous rise and fall of different cognitive abilities across the lifespan. Psychological science, 26(4), 433443. doi: 10.1177/0956797614567339 CrossRefGoogle Scholar
Lewis, G., Pelosi, A.J., Araya, R., & Dunn, G. (1992). Measuring psychiatric disorder in the community: a standardized assessment for use by lay interviewers. Psychological Medicine, 22(2), 465486. doi: 10.1017/S0033291700030415 CrossRefGoogle ScholarPubMed
Lezak, M.D., Howieson, D.B., Bigler, E.D., & Tranel, D. (2012). Neuropsychological assessment (5th ed.): Oxford University Press.Google Scholar
Luck, T., Pabst, A., Rodriguez, F.S., Schroeter, M.L., Witte, V., Hinz, A., … Riedel-Heller, S.G. (2018). Age-, sex-, and education-specific norms for an extended CERAD neuropsychological assessment battery-results from the population-based LIFE-Adult-Study. Neuropsychology, 32(4), 461475. doi: 10.1037/neu0000440 CrossRefGoogle ScholarPubMed
Machado, T.H., Fichman, H.C., Santos, E.L., & Carvalho, V.A. (2009). Normative data for healthy elderly on the phonemic verbal fluency task – FAS. Dementia & Neuropsyc, 3(1), 5560.CrossRefGoogle ScholarPubMed
Mioshi, E., Dawson, K., Mitchell, J., Arnold, R., & Hodges, J.R. (2006). The Addenbrooke’s Cognitive Examination Revised (ACE-R): a brief cognitive test battery for dementia screening. International Journal of Geriatric Psychiatry, 21(11), 10781085. doi: 10.1002/gps.1610 CrossRefGoogle ScholarPubMed
Morris, J.C., Heyman, A., Mohs, R.C., Hughes, J.P., van Belle, G., Fillenbaum, G., … Clark, C. (1989). The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer’s disease. Neurology, 39(9), 11591165.Google Scholar
Mukadam, N., Sommerlad, A., Huntley, J., & Livingston, G. (2019). Population attributable fractions for risk factors for dementia in low-income and middle-income countries: an analysis using cross-sectional survey data. Lancet Glob Health, 7(5), e596e603. doi: 10.1016/S2214-109X(19)30074-9 CrossRefGoogle ScholarPubMed
Nunes, M., Alves, M., Chor, D., Schmidt, M., & Duncan, B. (2011). Adaptação transcultural do CIS-R (Clinical Interview Schedule - Revised Version) para o português no estudo longitudinal de saúde do adulto (ELSA). Clinical & Biomedical Research, 31(4), 487490.Google Scholar
Passos, V.M.A., Caramelli, P., Benseñor, I., Giatti, L., & Maria Barreto, S. (2014). Methods of cognitive function investigation in the Longitudinal Study on Adult Health (ELSA-Brasil). Sao Paulo Medical Journal, 132(3), 170177. doi: 10.1590/1516-3180.2014.1323646 CrossRefGoogle Scholar
Passos, V.M.A., Giatti, L., Bensenor, I., Tiemeier, H., Ikram, M.A., de Figueiredo, R.C., … Barreto, S.M. (2015). Education plays a greater role than age in cognitive test performance among participants of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). BMC Neurology, 15(1), 191. doi: 10.1186/s12883-015-0454-6 CrossRefGoogle Scholar
Pelegrini, L.N.C., Mota, G.M.P., Ramos, C.F., Jesus, E., & Vale, F.A.C. (2019). Diagnosing dementia and cognitive dysfunction in the elderly in primary health care: a systematic review. Dementia & Neuropsychologia, 13, 144153.CrossRefGoogle ScholarPubMed
R. C. Team (2019). A language and environment for statistical computing. R Foundation for Statistical Computing (Version 1.2.1335). Vienna, Austria. Retrieved from https://www.R-project.org/ Google Scholar
Schmidt, M.I., Duncan, B.B., Mill, J.G., Lotufo, P.A., Chor, D., Barreto, S.M., … Bensenor, I.M. (2014). Cohort profile: Longitudinal Study of Adult Health (ELSA-Brasil). International Journal of Epidemiology, 44(1), 6875. doi: 10.1093/ije/dyu027 CrossRefGoogle Scholar
Schretlen, D.J., Testas, S.M., Winicki, J.M., Pearlson, G.D., & Gordon, B. (2008). Frequency and bases of abnormal performance by healthy adults on neuropsychological testing. Journal of the International Neuropsychological Society, 14(3), 436445. doi: 10.1017/S1355617708080387 CrossRefGoogle ScholarPubMed
Shimada, H., Park, H., Makizako, H., Doi, T., Lee, S., & Suzuki, T. (2014). Depressive symptoms and cognitive performance in older adults. Journal of Psychiatric Research, 57, 149156. doi: 10.1016/j.jpsychires.2014.06.004 CrossRefGoogle ScholarPubMed
StataCorp. (2013). Stata Statistical Software: Release 13. College Station, TX: StataCorp LP.Google Scholar
Strauss, E., Sherman, E.M.S., & Spreen, O. (2006). A Compendium of Neuropsychological Tests: Administration, Norms, and Commentary (3 ed.): Oxford University Press.Google Scholar
Suemoto, C.K., Bittencourt, M.S., Santos, I.S., Benseñor, I.M., & Lotufo, P.A. (2017). Coronary artery calcification and cognitive function: cross-sectional results from the ELSA-Brasil study. International Journal of Geriatric Psychiatry, 32(12), e188e194. doi: 10.1002/gps.4698 CrossRefGoogle ScholarPubMed
Teixeira, M.D.P. (2018). Democratizing the access to college education: Brazilian race/color classification in affirmative action’s debate. Ensaio: Avaliação e Políticas Públicas em Educação, 26(100), 595618. doi: 10.1590/s0104–40362018002601768 Google Scholar
Winblad, B., Palmer, K., Kivipelto, M., Jelic, V., Fratiglioni, L., Wahlund, L.O., … Petersen, R.C. (2004). Mild cognitive impairment--beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. Journal of Internal Medicine, 256(3), 240246. doi: 10.1111/j.1365-2796.2004.01380.x CrossRefGoogle Scholar
Yokomizo, J.E., Simon, S.S., & de Campos Bottino, C.M. (2014). Cognitive screening for dementia in primary care: a systematic review. International Psychogeriatrics, 26(11), 17831804. doi: 10.1017/S1041610214001082 CrossRefGoogle ScholarPubMed
Supplementary material: File

Bertola et al. supplementary material

Bertola et al. supplementary material 1

Download Bertola et al. supplementary material(File)
File 20.4 KB
Supplementary material: File

Bertola et al. supplementary material

Bertola et al. supplementary material 2

Download Bertola et al. supplementary material(File)
File 180.8 KB