Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-30T06:31:05.289Z Has data issue: false hasContentIssue false

Verbal Learning Strategy Following Mild Traumatic Brain Injury

Published online by Cambridge University Press:  04 May 2011

Elizabeth K. Geary
Affiliation:
Department of Neurology, The University of Illinois College of Medicine, Chicago, Illinois Center for Stroke Research, The University of Illinois College of Medicine, Chicago, Illinois
Marilyn F. Kraus
Affiliation:
Department of Neurology, The University of Illinois College of Medicine, Chicago, Illinois Department of Psychiatry, The University of Illinois College of Medicine, Chicago, Illinois Center for Cognitive Medicine, The University of Illinois College of Medicine, Chicago, Illinois
Leah H. Rubin
Affiliation:
Department of Psychiatry, The University of Illinois College of Medicine, Chicago, Illinois Center for Cognitive Medicine, The University of Illinois College of Medicine, Chicago, Illinois
Neil H. Pliskin
Affiliation:
Department of Neurology, The University of Illinois College of Medicine, Chicago, Illinois Department of Psychiatry, The University of Illinois College of Medicine, Chicago, Illinois Center for Cognitive Medicine, The University of Illinois College of Medicine, Chicago, Illinois
Deborah M. Little*
Affiliation:
Department of Neurology, The University of Illinois College of Medicine, Chicago, Illinois Center for Stroke Research, The University of Illinois College of Medicine, Chicago, Illinois Department of Anatomy, The University of Illinois College of Medicine, Chicago, Illinois Department of Ophthalmology, The University of Illinois College of Medicine, Chicago, Illinois Department of Psychology, The University of Illinois College of Medicine, Chicago, Illinois
*
Correspondence and reprint requests to: Deborah M. Little, Department of Neurology, MC 796, 912 South Wood Street 855 N., Chicago, IL 60612. E-mail: deborahmlittle@gmail.com

Abstract

That learning and memory deficits persist many years following mild traumatic brain injury (mTBI) is controversial due to inconsistent objective evidence supporting subjective complaints. Our prior work demonstrated significant reductions in performance on the initial trial of a verbal learning task and overall slower rate of learning in well-motivated mTBI participants relative to demographically matched controls. In our previous work, we speculated that differences in strategy use could explain the differences in rate of learning. The current study serves to test this hypothesis by examining strategy use on the California Verbal Learning Test-Second Edition. Our present findings support the primary hypothesis that mTBI participants under-utilize semantic clustering strategies during list-learning relative to control participants. Despite achieving comparable total learning scores, we posit that the persisting learning and memory difficulties reported by some mTBI patients may be related to reduced usage of efficient internally driven strategies that facilitate learning. Given that strategy training has demonstrated improvements in learning and memory in educational and occupational settings, we offer that these findings have translational value in offering an additional approach in remediation of learning and memory complaints reported by some following mTBI. (JINS, 2011, 17, 709–719)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexander, M. (1995). Mild traumatic brain injury: Pathophysiology, natural history, and clinical management. Neurology, 45, 12531260.CrossRefGoogle ScholarPubMed
Alexander, M., Stuss, D. (2006). Frontal injury: Impairments of fundamental processes lead to functional consequences. Journal of the International Neuropsychological Society, 12(2), 192193.CrossRefGoogle ScholarPubMed
Alexander, M., Stuss, D., Fansabedian, N. (2003). California Verbal Learning Test: Performance by patients with focal frontal and non-frontal lesions. Brain, 126(Pt 6), 14931503.CrossRefGoogle ScholarPubMed
Alexander, M., Stuss, D., Gillingham, S. (2009). Impaired list learning is not a general property of frontal lesions. Journal of Cognitive Neuroscience, 21(7), 14221434.CrossRefGoogle Scholar
American Congress on Rehabilitation Medicine. (1993). Definition of mild traumatic brain injury. Journal of Head Trauma Rehabilitation, 8, 8687.CrossRefGoogle Scholar
Anderson, J. (1982). Acquisition of a cognitive skill. Psychological Review, 89, 369406.CrossRefGoogle Scholar
Baldo, J., Delis, D., Kramer, J., Shimamura, A. (2002). Memory performance on the California Verbal Learning Test-II: Findings from patients with focal frontal lesions. Journal of the International Neuropsychological Society, 8(4), 539546.CrossRefGoogle ScholarPubMed
Basso, M., Lowery, N., Ghormley, C., Combs, D., Johnson, J. (2006). Self-generated learning in people with multiple sclerosis. Journal of the International Neuropsychological Society, 12(5), 640648.CrossRefGoogle ScholarPubMed
Becker, S., Lim, J. (2003). A computational model of prefrontal control in free recall: Strategic memory use in the California Verbal Learning Task. Journal of Cognitive Neuroscience, 15(6), 821832.CrossRefGoogle ScholarPubMed
Bendlin, B., Ries, M., Lazar, M., Alexander, A., Dempsey, R., Rowley, H., Johnson, S. (2008). Longitudinal changes in patients with traumatic brain injury assessed with diffusion-tensor and volumetric imaging. Neuroimage, 42(2), 503514.CrossRefGoogle ScholarPubMed
Benedictus, M., Spikman, J., van der Naalt, J. (2010). Cognitive and behavioral impairment in traumatic brain injury related to outcome and return to work. Archives of Physical Medicine and Rehabilitation, 91(9), 14361441.CrossRefGoogle ScholarPubMed
Binder, L., Rohling, M., Larrabee, G. (1997). A review of mild head trauma. Part I: Meta-analytic review of neuropsychological studies. Journal of Clinical and Experimental Neuropsychology, 19(3), 421431.CrossRefGoogle ScholarPubMed
Bruce, J., Echemendia, R. (2003). Delayed-onset deficits in verbal encoding strategies among patients with mild traumatic brain injury. Neuropsychology, 17(4), 622629.CrossRefGoogle ScholarPubMed
Busch, R., McBride, A., Curtiss, G., Vanderploeg, R. (2005). The components of executive functioning in traumatic brain injury. Journal of Clinical and Experimental Neuropsychology, 27(8), 10221032.CrossRefGoogle ScholarPubMed
Cabeza, R., Nyberg, L. (2000). Neural bases of learning and memory: Functional neuroimaging evidence. Current Opinion in Neurology, 13(4), 415421.CrossRefGoogle ScholarPubMed
Cassidy, J., Carroll, L., Peloso, P., Borg, J., von Holst, H., Holm, L., WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. (2004). WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. Incidence, risk factors and prevention of mild traumatic brain injury: Results of the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. Journal of Rehabilitation Medicine, 43(Suppl), 2860.CrossRefGoogle Scholar
Chan, A., Kwoka, I., Chiub, H., Lamb, L., Pangb, A., Chow, L. (2000). Memory and organizational strategies in chronic and acute schizophrenic patients. Schizophrenia Research, 41(3), 431445.CrossRefGoogle ScholarPubMed
Cicerone, K., Kalmar, K. (1995). Persistent postconcussion syndrome: The structure of subjective complaints after mild traumatic brain injury. The Journal of Head Trauma Rehabilitation, 10(3), 117.CrossRefGoogle Scholar
Cicerone, K., Levin, H., Malec, J., Stuss, D., Whyte, J. (2006). Cognitive rehabilitation interventions for executive function: Moving from bench to bedside in patients with traumatic brain injury. Journal of Cognitive Neuroscience, 1(7), 12121222.CrossRefGoogle Scholar
DeJong, J., Donders, J. (2010). Cluster subtypes on the California Verbal Learning Test-Second Edition (CVLT-II) in a traumatic brain injury sample. Journal of Clinical and Experimental Neuropsychology, 32(9), 953960.CrossRefGoogle Scholar
Delis, D., Fine, E., Stricker, J., Houston, W., Wetter, S., Cobell, K., Bondi, M. (2010). Comparison of the traditional recall-based versus a new list-based method for computing semantic clustering on the California Verbal Learning Test: Evidence from Alzheimer's disease. The Clinical Neuropsychologist, 24(1), 7079.CrossRefGoogle ScholarPubMed
Delis, D., Freeland, J., Kramer, J., Kaplan, E. (1988). Integrating clinical assessment with cognitive neuroscience: Construct validation of the California Verbal Learning Test. Journal of Consulting and Clinical Psychology, 56(1), 123130.CrossRefGoogle ScholarPubMed
Delis, D., Kramer, J., Kaplan, E., Obers, B. (2000a). California Verbal Learning Test-examiners manual (Second-Adult Version ed.). San Antonio, TX: The Psychological Corporation.Google Scholar
Delis, D., Kramer, J., Kaplan, E., Obers, B. (2000b). California Verbal Learning Test-II (2nd ed.). San Antonio, TX: Psychological Corporation.Google Scholar
Deluca, J., Schultheis, M., Madigan, N., Christodoulou, C., Averill, A. (2000). Acquisition versus retrieval deficits in traumatic brain injury: Implications for memory rehabilitation. Archives of Physical Medicine and Rehabilitation, 81, 13271333.CrossRefGoogle ScholarPubMed
DeRosa, D., Doane, D., Russell, B. (1970). The influence of first-list organization upon second-list free-recall learning. Journal of Verbal Learning and Verbal Behavior, 9(3), 269273.CrossRefGoogle Scholar
Dikmen, S., Corrigan, J., Levin, H., Machamer, J., Stiers, W., Weisskopf, M. (2009). Cognitive outcome following traumatic brain injury. The Journal of Head Trauma Rehabilitation, 24(6), 430438.CrossRefGoogle ScholarPubMed
Ellis, H. (1965). The transfer of learning. New York: MacMillan.Google Scholar
Ettenhofer, M., Abeles, N. (2009). The significance of mild traumatic brain injury to cognition and self-reported symptoms in long-term recovery from injury. Journal of Clinical and Experimental Neuropsychology, 31(3), 363372.CrossRefGoogle ScholarPubMed
Fiszdon, J., McClough, J., Silverstein, S., Bell, M., Jaramillo, J., Smith, T. (2006). Learning potential as a predictor of readiness for psychosocial rehabilitation in schizophrenia. Psychiatry Research, 143(2–3), 159166.CrossRefGoogle ScholarPubMed
Geary, E., Kraus, M., Pliskin, N., Little, D. (2010). Verbal learning differences in chronic mild traumatic brain injury. Journal of the International Neuropsychological Society, 16, 506516.CrossRefGoogle ScholarPubMed
Ghajar, J., Ivry, R., The Cognitive Neurobiological Consortium (2008). The predictive brain state: Timing deficiency in traumatic brain injury? Neurorehabilitation and Neural Repair, 22, 217227.CrossRefGoogle ScholarPubMed
Gongvatana, A., Woods, S., Taylor, M., Vigil, O., Grant, I., Group, T.H. (2007). Semantic clustering inefficiency in HIV associated dementia. The Journal of Neuropsychiatry and Clinical Neurosciences, 19, 3642.CrossRefGoogle ScholarPubMed
Gsottschneider, A., Keller, Z., Pitschel-Walz, G., Froböse, T., Bäuml, J., Jahn, T. (2010). The role of encoding strategies in the verbal memory performance in patients with schizophrenia. Journal of Neuropsychology, [Epub ahead of print].Google Scholar
Hartikainen, K., Waljas, M., Isoviita, T., Dastidar, P., Liimatainen, S., Solbakk, A., Ohman, J. (2010). Persistent symptoms in mild to moderate traumatic brain injury associated with executive dysfunction. Journal of Clinical and Experimental Neuropsychology, 32(7), 767774.CrossRefGoogle ScholarPubMed
Iverson, G. (2005). Outcome from mild traumatic brain injury. Current Opinion in Psychiatry, 18, 301317.CrossRefGoogle ScholarPubMed
Iverson, G. (2010). Mild traumatic brain injury meta-analyses can obscure individual differences. Brain Injury, 24(10), 12461255.CrossRefGoogle ScholarPubMed
Jefferies, E., Hoffman, P., Jones, R., Ralph, M. (2008). The impact of semantic impairment on verbal short-term memory in stroke aphasia and semantic dementia: A comparative study. Journal of Memory and Language, 58(1), 6687.CrossRefGoogle ScholarPubMed
Kinnunen, K., Greenwood, R., Powell, J., Leech, R., Hawkins, P., Bonnelle, V., Sharp, D. (2011). White matter damage and cognitive impairment after traumatic brain injury. Brain, 134(Pt 2), 449463.CrossRefGoogle ScholarPubMed
Kraus, M., Susmaras, T., Caughlin, B., Walker, C., Sweeney, J., Little, D. (2007). White matter integrity and cognition in chronic traumatic brain injury: A diffusion tensor imaging study. Brain, 130, 25082519.CrossRefGoogle ScholarPubMed
Levin, H. (1992). Neurobehavioral Recovery. Journal of Neurotrauma, 9, S359S373.Google ScholarPubMed
Levine, B., Stuss, D., Milberg, W., Alexander, M., Schwartz, M., Macdonald, R. (1998). The effects of focal and diffuse brain damage on strategy application: Evidence from focal lesions, traumatic brain injury and normal aging. Journal of the International Neuropsychological Society, 4(3), 247264.CrossRefGoogle ScholarPubMed
Little, D., Kraus, M., Joseph, J., Geary, E., Susmaras, T., Zhou, X., Gorelick, P. (2010). Thalamic integrity underlies executive dysfunction in traumatic brain injury. Neurology, 74(7), 558564.CrossRefGoogle ScholarPubMed
Logan, G. (1998). Toward an instance theory of automatization. Psychological Review, 95, 492527.CrossRefGoogle Scholar
Luek, S. (1976). Spontaneous categorizers retain more than spontaneous alphabetizers. Memory & Cognition, 4(5), 476482.CrossRefGoogle ScholarPubMed
Matsui, M., Suzuki, M., Zhou, S., Takahashi, T., Kawasaki, Y., Yuuki, H., Kurachi, M. (2008). The relationship between prefrontal brain volume and characteristics of memory strategy in schizophrenia spectrum disorders. Progress in Neuro-psychopharmacology & Biological Psychiatry, 32(8), 18541862.CrossRefGoogle ScholarPubMed
Mayer, A., Mannell, M., Ling, J., Elgie, R., Gasparovic, C., Phillips, J., Yeo, R. (2009). Auditory orienting and inhibition of return in mild traumatic brain injury: A FMRI study. Human Brain Mapping, 30(12), 41524166.CrossRefGoogle ScholarPubMed
Millis, S., Ricker, J. (1994). Verbal learning patterns in moderate and severe traumatic brain injury. Journal of Clinical and Experimental Neuropsychology, 16(4), 498507.CrossRefGoogle ScholarPubMed
Nolin, P. (2006). Executive memory dysfunctions following mild traumatic brain injury. The Journal of Head Trauma Rehabilitation, 21(1), 6875.CrossRefGoogle ScholarPubMed
O'Brien, A., Chiaravalloti, N., Arango-Lasprilla, J., Lengenfelder, J., DeLuca, J. (2007). An investigation of the differential effect of self-generation to improve learning and memory in multiple sclerosis and traumatic brain injury. Neuropsychological Rehabilitation, 17(3), 273292.CrossRefGoogle ScholarPubMed
Ponsford, J., Willmott, C., Rothwell, A., Cameron, P., Kelly, A., Nelms, R., Ng, K. (2000). Factors influencing outcome following mild traumatic brain injury in adults. Journal of the International Neuropsychological Society, 6, 568579.CrossRefGoogle ScholarPubMed
Ranjith, N., Mathuranath, P., Sharma, G., Alexander, A. (2010). Qualitative aspects of learning, recall, and recognition in dementia. Annals of Indian Academy of Neurology, 13(2), 117122.Google ScholarPubMed
Ribeiro, F., Guerreiro, M., De Mendonça, A. (2007). Verbal learning and memory deficits in Mild Cognitive Impairment. Journal of Clinical and Experimental Neuropsychology, 29(2), 187197.CrossRefGoogle ScholarPubMed
Roofeh, D., Cottone, J., Burdick, K., Lencz, T., Gyato, K., Cervellione, K., Kumra, S. (2006). Deficits in memory strategy use are related to verbal memory impairments in adolescents with schizophrenia-spectrum disorders. Schizophrenia Research, 85(1–3), 201212.CrossRefGoogle ScholarPubMed
Satz, P., Alfano, M., Light, R., Morgenstern, H., Zaucha, K., Asarnow, R., Newton, S. (1999). Persistent post-concussive syndrome: A proposed methodology and literature review to determine the effects, if any, of mild head and other bodily injury. Journal of Clinical and Experimental Neuropsychology, 21(5), 620628.CrossRefGoogle ScholarPubMed
Schefft, B., Dulay, M., Fargo, J. (2008). The use of a self-generation memory encoding strategy to improve verbal memory and learning in patients with traumatic brain injury. Applied Neuropsychology, 15(1), 6168.CrossRefGoogle ScholarPubMed
Schretlen, D., Shapiro, A. (2003). A quantitative review of the effects of traumatic brain injury on cognitive functioning. International Review of Psychiatry (Abingdon, England), 15(4), 341349.CrossRefGoogle ScholarPubMed
Schweizer, T., Alexander, M., Gillingham, S., Cusimano, M., Stuss, D. (2010). Lateralized cerebellar contributions to word generation: A phonemic and semantic fluency study. Behavioural Neurology, 23(1–2), 3137.CrossRefGoogle ScholarPubMed
Sidaros, A., Skimminge, A., Liptrot, M., Sidaros, K., Engberg, A., Herning, M., Rostrup, E. (2009). Long-term global and regional brain volume changes following severe traumatic brain injury: A longitudinal study with clinical correlates. Neuroimage, 44(1), 18.CrossRefGoogle ScholarPubMed
Silver, C. (2000). Ecological validity of neuropsychological assessment in childhood traumatic brain injury. Journal of Head Trauma Rehabilitation, 15(4), 973988.CrossRefGoogle ScholarPubMed
Sternberg, R., Tulving, E. (1977). The measurement of subjective organization in free recall. Psychological Bulletin, 84, 539556.CrossRefGoogle Scholar
Strangman, G., O'Neil-Pirozzi, T., Goldstein, R., Kelkar, K., Katz, D., Burke, D., Glenn, M. (2008). Prediction of memory rehabilitation outcomes in traumatic brain injury by using functional magnetic resonance imaging. Archives of Physical Medicine and Rehabilitation, 89(5), 974981.CrossRefGoogle ScholarPubMed
Stricker, J., Brown, G., Wixted, J., Baldo, J., Delis, D. (2002). New semantic and serial clustering indices for the California Verbal Learning Test-Second Edition: Background, rationale, and formulae. Journal of the International Neuropsychological Society, 8(3), 425435.CrossRefGoogle ScholarPubMed
Stuss, D., Alexander, M. (2007). Is there a dysexecutive syndrome? Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362(1481), 901915.CrossRefGoogle Scholar
Stuss, D., Levine, B. (2002). Adult clinical neuropsychology: Lessons from studies of the frontal lobes. Annual Review of Psychology, 53, 401433.CrossRefGoogle ScholarPubMed
Tagliaferri, F., Compagnone, C., Korsic, M., Servadei, F., Kraus, J. (2006). A systematic review of brain injury epidemiology in Europe. Acta Neurochirurgica, 148(3), 255268.CrossRefGoogle ScholarPubMed
Turner, M., Cipolotti, L., Yousry, T., Shallice, T. (2007). Qualitatively different memory impairments across frontal lobe subgroups. Neuropsychologia, 45(7), 15401552.CrossRefGoogle ScholarPubMed
Turriziani, P., Smirni, D., Oliveri, M., Semenza, C., Cipolott, L. (2010). The role of the prefrontal cortex in familiarity and recollection processes during verbal and non-verbal recognition memory: An rTMS study. Neuroimage, 52(1), 348357.CrossRefGoogle ScholarPubMed
Weber, J. (2007). Experimental models of repetitive brain injuries. Progress in Brain Research, 161, 253261.CrossRefGoogle ScholarPubMed
West, L., Curtis, K., Greve, K., Bianchini, K. (2010). Memory in traumatic brain injury: The effects of injury severity and effort on the Wechsler Memory Scale-III. Journal of Neuropsychology, [Epub ahead of print].Google Scholar
Young, R., Hakes, D., Hicks, R. (1965). Effects of list length in the Ebbinghaus derived-list paradigm. Journal of Experimental Psychology, 70, 338341.CrossRefGoogle ScholarPubMed
Zappalá, G., Trexler, L. (1992). Quantitative and qualitative aspects of memory performance after minor head injury. Archives of Clinical Neuropsychology, 7(2), 145154.CrossRefGoogle ScholarPubMed