Skip to main content
    • Aa
    • Aa

Multivariate Pattern Analysis of fMRI in Breast Cancer Survivors and Healthy Women

  • S.M. Hadi Hosseini (a1) and Shelli R. Kesler (a1) (a2)

Advances in breast cancer (BC) treatments have resulted in significantly improved survival rates. However, BC chemotherapy is often associated with several side effects including cognitive dysfunction. We applied multivariate pattern analysis (MVPA) to functional magnetic resonance imaging (fMRI) to find a brain connectivity pattern that accurately and automatically distinguishes chemotherapy-treated (C+) from non-chemotherapy treated (C−) BC females and healthy female controls (HC). Twenty-seven C+, 29 C−, and 30 HC underwent fMRI during an executive-prefrontal task (Go/Nogo). The pattern of functional connectivity associated with this task discriminated with significant accuracy between C+ and HC groups (72%, p = .006) and between C+ and C− groups (71%, p = .012). However, the accuracy of discrimination between C− and HC was not significant (51%, p = .46). Compared with HC, behavioral performance of the C+ and C− groups during the task was intact. However, the C+ group demonstrated altered functional connectivity in the right frontoparietal and left supplementary motor area networks compared to HC, and in the right middle frontal and left superior frontal gyri networks, compared to C−. Our results provide further evidence that executive function performance may be preserved in some chemotherapy-treated BC survivors through recruitment of additional neural connections. (JINS, 2013, 19, 1–11)

Corresponding author
Correspondence and reprint requests to: Shelli Kesler,401 Quarry Road, MC5795,Stanford, CA 94305-5795. E-mail:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

Y. Aksu , D.J. Miller , G. Kesidis , D.C. Bigler , Q.X. Yang (2011). An MRI-derived definition of MCI-to-AD conversion for long-term, automatic prognosis of MCI patients. PLoS One, 6(10), e25074. doi:10.1371/journal.pone.0025074

Y. Behzadi , K. Restom , J. Liau , T.T. Liu (2007). A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage, 37(1), 90101.

M.B. de Ruiter , L. Reneman , W. Boogerd , D.J. Veltman , M. Caan , G. Douaud , S.B. Schagen (2012). Late effects of high-dose adjuvant chemotherapy on white and gray matter in breast cancer survivors: Converging results from multimodal magnetic resonance imaging. Human Brain Mapping, 33(12), 29712983. doi:10.1002/hbm.21422

M.B. de Ruiter , L. Reneman , W. Boogerd , D.J. Veltman , F.S. van Dam , A.J. Nederveen , S.B. Schagen (2011). Cerebral hyporesponsiveness and cognitive impairment 10 years after chemotherapy for breast cancer. Human Brain Mapping, 32(8), 12061219. doi:10.1002/hbm.21102

S. Deprez , F. Amant , A. Smeets , R. Peeters , A. Leemans , W. Van Hecke , S. Sunaert (2012). Longitudinal assessment of chemotherapy-induced structural changes in cerebral white matter and its correlation with impaired cognitive functioning. Journal of Clinical Oncology, 30(3), 274281. doi:10.1200/JCO.2011.36.8571

R.J. Ferguson , B.C. McDonald , A.J. Saykin , T.A. Ahles (2007). Brain structure and function differences in monozygotic twins: Possible effects of breast cancer chemotherapy. Journal of Clinical Oncology, 25(25), 38663870. doi:25/25/3866 [pii]10.1200/JCO.2007.10.8639

G.H. Glover , S. Lai (1998). Self-navigated spiral fMRI: Interleaved versus single-shot. Magnetic Resonance Medicine, 39(3), 361368.

M.D. Greicius , B.H. Flores , V. Menon , G.H. Glover , H.B. Solvason , A.L. Reiss , A.F. Schatzberg (2007). Resting-state functional connectivity in major depression: Abnormally increased contributions from subgenual cingulate cortex and thalamus. Biological Psychiatry, 62(5), 429437. doi:10.1016/j.biopsych.2006.09.020

F. Hoeft , B.D. McCandliss , J.M. Black , A. Gantman , N. Zakerani , C. Hulme , J.D. Gabrieli (2011). Neural systems predicting long-term outcome in dyslexia. Proceedings of the National Academy of Sciences of the United States of America, 108(1), 361366. doi:10.1073/pnas.1008950108

M.C. Janelsins , S. Kohli , S.G. Mohile , K. Usuki , T.A. Ahles , G.R. Morrow (2011). An update on cancer- and chemotherapy-related cognitive dysfunction: Current status. Seminars in Oncology, 38(3), 431438. doi:10.1053/j.seminoncol.2011.03.014

D.T. Jones , M.M. Machulda , P. Vemuri , E.M. McDade , G. Zeng , M.L. Senjem , C.R. Jack Jr (2011). Age-related changes in the default mode network are more advanced in Alzheimer disease. Neurology, 77(16), 15241531. doi:10.1212/WNL.0b013e318233b33d

Y. Kamitani , F. Tong (2005). Decoding the visual and subjective contents of the human brain. Nature Neuroscience, 8(5), 679685. doi:10.1038/nn1444

S. Kesler , M. Janelsins , D. Koovakkattu , O. Palesh , K. Mustian , G. Morrow , F.S. Dhabhar (2013). Reduced hippocampal volume and verbal memory performance associated with interleukin-6 and tumor necrosis factor-alpha levels in chemotherapy-treated breast cancer survivors. Brain Behavior and Immunity, 30(Suppl), S109S116. doi:10.1016/j.bbi.2012.05.017

S.R. Kesler , F.C. Bennett , M.L. Mahaffey , D. Spiegel (2009). Regional brain activation during verbal declarative memory in metastatic breast cancer. Clinical Cancer Research, 15(21), 66656673. doi:10.1158/1078-0432.CCR-09-1227

S.R. Kesler , J.S. Wefel , S.M. Hosseini , M. Cheung , C.L. Watson , F. Hoeft (2013). Default mode network connectivity distinguishes chemotherapy-treated breast cancer survivors from controls. Proceedings of the National Academy of Sciences of the United States of America, 110(28), 1160011605. doi:10.1073/pnas.1214551110

S.E. Leh , M. Petrides , A.P. Strafella (2010). The neural circuitry of executive functions in healthy subjects and Parkinson's disease. Neuropsychopharmacology, 35(1), 7085.

H. Mar Fan , N. Houédé-Tchen , I. Chemerynsky , Q.-L. Yi , W. Xu , B. Harvey (2010). Menopausal symptoms in women undergoing chemotherapy-induced and natural menopause: A prospective controlled study. Annals of Oncology, 21(5), 983987.

M.J. Marzelli , F. Hoeft , D.S. Hong , A.L. Reiss (2011). Neuroanatomical spatial patterns in Turner syndrome. Neuroimage, 55(2), 439447. doi:10.1016/j.neuroimage.2010.12.054

B.C. McDonald , S.K. Conroy , T.A. Ahles , J.D. West , A.J. Saykin (2010). Gray matter reduction associated with systemic chemotherapy for breast cancer: A prospective MRI study. Breast Cancer Research and Treatment, 123(3), 819828. doi:10.1007/s10549-010-1088-4

B.C. McDonald , S.K. Conroy , T.A. Ahles , J.D. West , A.J. Saykin (2012). Alterations in brain activation during working memory processing associated with breast cancer and treatment: A prospective functional magnetic resonance imaging study. Journal of Clinical Oncology, 30(20), 25002508. doi:10.1200/JCO.2011.38.5674

W.S. Noble (2006). What is a support vector machine? Nature Biotechnology, 24(12), 15651567. doi:10.1038/nbt1206-1565

L. O'Dwyer , F. Lamberton , S. Matura , M. Scheibe , J. Miller , D. Rujescu , H. Hampel (2012). White matter differences between healthy young ApoE4 carriers and non-carriers identified with tractography and support vector machines. PLoS One, 7(4), e36024. doi:10.1371/journal.pone.0036024

A.J. O'Toole , F. Jiang , H. Abdi , N. Penard , J.P. Dunlop , M.A. Parent (2007). Theoretical, statistical, and practical perspectives on pattern-based classification approaches to the analysis of functional neuroimaging data. Journal of Cognitive Neuroscience, 19(11), 17351752. doi:10.1162/jocn.2007.19.11.1735

G. Orru , W. Pettersson-Yeo , A.F. Marquand , G. Sartori , A. Mechelli (2012). Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: A critical review. Neuroscience Biobehavioral Reviews, 36(4), 11401152. doi:10.1016/j.neubiorev.2012.01.004

F. Pereira , T. Mitchell , M. Botvinick (2009). Machine learning classifiers and fMRI: A tutorial overview. Neuroimage, 45(1 Suppl), S199S209. doi:10.1016/j.neuroimage.2008.11.007

K.M. Phillips , H.S. Jim , B.J. Small , C. Laronga , M.A. Andrykowski , P.B. Jacobsen (2012). Cognitive functioning after cancer treatment: A 3-year longitudinal comparison of breast cancer survivors treated with chemotherapy or radiation and noncancer controls. Cancer, 118(7), 19251932. doi:10.1002/cncr.26432

T.W. Picton , D.T. Stuss , M.P. Alexander , T. Shallice , M.A. Binns , S. Gillingham (2007). Effects of focal frontal lesions on response inhibition. Cerebral Cortex, 17(4), 826838. doi:bhk031 [pii]10.1093/cercor/bhk031

P.A. Reuter-Lorenz , B. Cimprich (2013). Cognitive function and breast cancer: Promise and potential insights from functional brain imaging. Breast Cancer Research and Treatment, 137(1), 3343. doi:10.1007/s10549-012-2266-3

G. Rodin , T.A. Ahles (2012). Accumulating evidence for the effect of chemotherapy on cognition. Journal of Clinical Oncology, 30(29), 35683569. doi:10.1200/JCO.2012.43.5776

C. Scherling , B. Collins , J. Mackenzie , C. Bielajew , A. Smith (2011). Pre-chemotherapy differences in visuospatial working memory in breast cancer patients compared to controls: An FMRI study. Frontiers in Human Neuroscience, 5, 122. doi:10.3389/fnhum.2011.00122

Y.I. Sheline , M.E. Raichle , A.Z. Snyder , J.C. Morris , D. Head , S. Wang , M.A. Mintun (2010). Amyloid plaques disrupt resting state default mode network connectivity in cognitively normal elderly. Biological Psychiatry, 67(6), 584587. doi:10.1016/j.biopsych.2009.08.024

D.H. Silverman , C.J. Dy , S.A. Castellon , J. Lai , B.S. Pio , L. Abraham , P.A. Ganz (2007). Altered frontocortical, cerebellar, and basal ganglia activity in adjuvant-treated breast cancer survivors 5-10 years after chemotherapy. Breast Cancer Research and Treatment, 103(3), 303311. doi:10.1007/s10549-006-9380-z

C.S. Stilley , C.M. Bender , J. Dunbar-Jacob , S. Sereika , C.M. Ryan (2010). The impact of cognitive function on medication management: Three studies. Health Psychology, 29(1), 5055. doi:10.1037/a0016940

N. Tzourio-Mazoyer , B. Landeau , D. Papathanassiou , F. Crivello , O. Etard , N. Delcroix , M. Joliot (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 15(1), 273289. doi:10.1006/nimg.2001.0978S1053811901909784 [pii]

J. Vardy (2009). Cognitive function in breast cancer survivors. Cancer Treatment Research, 151, 387419. doi:10.1007/978-0-387-75115-3_24

J.S. Wefel , A.K. Saleeba , A.U. Buzdar , C.A. Meyers (2010). Acute and late onset cognitive dysfunction associated with chemotherapy in women with breast cancer. Cancer, 116(14), 33483356. doi:10.1002/cncr.25098

J.S. Wefel , S.B. Schagen (2012). Chemotherapy-related cognitive dysfunction. Current Neurological and Neuroscience Reports, 12(3), 267275. doi:10.1007/s11910-012-0264-9

S. Whitfield-Gabrieli , A. Nieto-Castanon (2012). Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connectivity, 2(3), 125141. doi:10.1089/brain.2012.0073

D. Zhang , D. Shen (2012). Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease. Neuroimage, 59(2), 895907. doi:10.1016/j.neuroimage.2011.09.069

D. Zhang , Y. Wang , L. Zhou , H. Yuan , D. Shen (2011). Multimodal classification of Alzheimer's disease and mild cognitive impairment. Neuroimage, 55(3), 856867. doi:10.1016/j.neuroimage.2011.01.008

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the International Neuropsychological Society
  • ISSN: 1355-6177
  • EISSN: 1469-7661
  • URL: /core/journals/journal-of-the-international-neuropsychological-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score