Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T11:29:47.271Z Has data issue: false hasContentIssue false

One-year follow-up study of relapsing-remitting MS patients' cognitive performances: Paced Auditory Serial Addition Test's susceptibility to change

Published online by Cambridge University Press:  14 August 2007

EIJA ROSTI
Affiliation:
Department of Neurology, Seinäjoki Central Hospital, Seinäjoki, Finland Department of Neurology and Rehabilitation, Tampere University Hospital, Tampere, Finland
PÄIVI HÄMÄLÄINEN
Affiliation:
Masku Neurological Rehabilitation Centre, Masku, Finland
KEIJO KOIVISTO
Affiliation:
Department of Neurology, Seinäjoki Central Hospital, Seinäjoki, Finland
LAURA HOKKANEN
Affiliation:
Department of Psychology, University of Helsinki, Helsinki, Finland

Abstract

To evaluate the progression of cognitive decline in multiple sclerosis (MS) patients and the susceptibility of the Multiple Sclerosis Functional Composite (MSFC) Paced Auditory Serial Addition Test (PASAT) to change, we conducted a 1-year follow-up with a comprehensive neuropsychological examination to 19 initially cognitively impaired and 26 cognitively intact relapsing–remitting MS patients, and to 48 healthy controls. The results indicated that the cognitive performance of MS patients remained relatively stable. Healthy controls tended to perform better on most neuropsychological measures at follow-up, the same was not observed in the MS groups. PASAT showed a significant difference between the groups: the cognitively impaired group tended to deteriorate, whereas the control group and the cognitively intact group improved. The change in PASAT could not be explained by the background variables, for example, mood, quality of life, or nervousness. Therefore, the MSFC-PASAT seems to be a sensitive measure to show clinical change in the cognitive status. (JINS, 2007, 13, 791–798.)

Type
Research Article
Copyright
2007 The International Neuropsychological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Äikiä, M., Kälviäinen, R., & Riekkinen, P.J. (1995). Verbal learning and memory in newly diagnosed partial epilepsy. Epilepsy Research, 22, 157164.Google Scholar
Amato, M.P., Ponziani, G., Pracucci, G., Bracco, L., Siracusa, G., & Amaducci, L. (1995). Cognitive impairment in early-onset multiple sclerosis. Pattern, predictors, and impact on everyday life in a 4-year follow-up. Archives of Neurology, 52, 168172.Google Scholar
Amato, M.P., Ponziani, G., Siracusa, G., & Sorbi, S. (2001). Cognitive dysfunction in early-onset multiple sclerosis: A reappraisal after 10 years. Archives of Neurology, 58, 16021606.Google Scholar
Beck, A.T., Ward, C.H., Mendelson, M., Mock, J., & Erbaugh, J. (1961). An inventory for measuring depression. Archives of General Psychiatry, 4, 561571.Google Scholar
Camp, S.J., Stevenson, V.L., Thompson, A.J., Ingle, G.T., Miller, D.H., Borras, C., Brochet, B., Dousset, V., Falautano, M., Filippi, M., Kalkers, N.F., Montalban, X., Polman, C.H., & Langdon, D.W. (2005). A longitudinal study of cognition in primary progressive multiple sclerosis. Brain, 128(Pt 12), 28912898.Google Scholar
Cutter, G.R., Baier, M.L., Rudick, R.A., Cookfair, D.L., Fischer, J.S., Petkau, J., Syndulko, K., Weinshenker, B.G., Antel, J.P., Confavreux, C., Ellison, G.W., Lublin, F., Miller, A.E., Rao, S.M., Reingold, S., Thompson, A., & Willoughby, E. (1999). Development of a multiple sclerosis functional composite as a clinical trial outcome measure. Brain, 122(Pt 5), 871882.Google Scholar
Demaree, H.A., DeLuca, J., Gaudino, E.A., & Diamond, B.J. (1999). Speed of information processing as a key deficit in multiple sclerosis: Implications for rehabilitation. Journal of Neurology, Neurosurgery, and Psychiatry, 67, 661663.Google Scholar
Feinstein, A., Kartsounis, L.D., Miller, D.H., Youl, B.D., & Ron, M.A. (1992). Clinically isolated lesions of the type seen in multiple sclerosis: A cognitive, psychiatric, and MRI follow up study. Journal of Neurology, Neurosurgery, and Psychiatry, 55, 869876.Google Scholar
Gronwall, D.M. (1977). Paced auditory serial-addition task: A measure of recovery from concussion. Perceptual and Motor Skills, 44, 367373.Google Scholar
Gronwall, D. & Wrightson, P. (1981). Memory and information processing capacity after closed head injury. Journal of Neurology, Neurosurgery, and Psychiatry, 44, 889895.Google Scholar
Grossman, M., Robinson, K.M., Onishi, K., Thompson, H., Cohen, J., & D'Esposito, M. (1995). Sentence comprehension in multiple sclerosis. Acta Neurologica Scandinavica, 92, 324331.Google Scholar
Haase, C.G., Tinnefeld, M., Daum, I., Ganz, R.E., Haupts, M., & Faustmann, P.M. (2004). Cognitive, but not mood dysfunction develops in multiple sclerosis during 7 years of follow-up. European Neurology, 52, 9295.Google Scholar
Hohol, M.J., Guttmann, C.R., Orav, J., Mackin, G.A., Kikinis, R., Khoury, S.J., Jolesz, F.A., & Weiner, H.L. (1997). Serial neuropsychological assessment and magnetic resonance imaging analysis in multiple sclerosis. Archives of Neurology, 54, 10181025.Google Scholar
Jennekens-Schinkel, A., Laboyrie, P.M., Lanser, J.B., & van der Velde, E.A. (1990). Cognition in patients with multiple sclerosis After four years. Journal of the Neurological Sciences, 99, 229247.Google Scholar
Korkman, M., Kirk, U., & Kemp, S. (1998). NEPSY—A developmental neuropsychological assessment: Manual. San Antonio, TX: Psychological Corporation.
Kujala, P., Portin, R., Revonsuo, A., & Ruutiainen, J. (1994). Automatic and controlled information processing in multiple sclerosis. Brain, 117(Pt 5), 11151126.Google Scholar
Kujala, P., Portin, R., Revonsuo, A., & Ruutiainen, J. (1995). Attention related performance in two cognitively different subgroups of patients with multiple sclerosis. Journal of Neurology, Neurosurgery, and Psychiatry, 59, 7782.Google Scholar
Kujala, P., Portin, R., & Ruutiainen, J. (1997). The progress of cognitive decline in multiple sclerosis. A controlled 3-year follow-up. Brain, 120(Pt 2), 289297.Google Scholar
Kurtzke, J.F. (1983). Rating neurologic impairment in multiple sclerosis: An Expanded Disability Status Scale (EDSS). Neurology, 33, 14441452.Google Scholar
Lezak, M.D. (1995). Neuropsychological assessment. 3rd ed. New York: Oxford University Press.
Mariani, C., Farina, E., Cappa, S.F., Anzola, G.P., Faglia, L., Bevilacqua, L., Capra, R., Mattioli, F., & Vignolo, L.A. (1991). Neuropsychological assessment in multiple sclerosis: A follow-up study with magnetic resonance imaging. Journal of Neurology, 238, 395400.Google Scholar
Ministry of Labour, Employment Office (1969). Arithmetics, N1/K. Helsinki: Psykologien Kustannus.
Nelson, H.E. (1976). A modified card sorting test sensitive to frontal lobe defects. Cortex, 12, 313324.Google Scholar
Osterrieth, P.A. (1944). Le test de copie d'une figure complexe. Archives de Psychologie, 30, 206356.Google Scholar
Ozakbas, S., Ormeci, B., & Idiman, E. (2005). Utilization of the multiple sclerosis functional composite in follow-up: Relationship to disease phenotype, disability and treatment strategies. Journal of the Neurological Sciences, 232, 6569.Google Scholar
Piras, M.R., Magnamo, I., Canu, E.D.G., Paulus, K.S., Satta, W.M., Soddu, A., Conti, M., Achene, A., Solinas, G., & Aiello, I. (2003). Longitudinal study of cognitive performance in multiple sclerosis: Neuropsychological, neuroradiological, and neurophysiological findings. Journal of Neurology, Neurosurgery, and Psychiatry, 74, 878885.Google Scholar
Portin, R., Saarijarvi, S., Joukamaa, M., & Salokangas, R.K. (1995). Education, gender and cognitive performance in a 62-year-old normal population: Results from the Turva Project. Psychological Medicine, 25, 12951298.Google Scholar
Poser, C.M., Paty, D.W., Scheinberg, L., McDonald, W.I., Davis, F.A., Ebers, G.C., Johnson, K.P., Sibley, W.A., Silberberg, D.H., & Tourtellotte, W.W. (1983). New diagnostic criteria for multiple sclerosis: Guidelines for research protocols. Annals of Neurology, 13, 227231.Google Scholar
Rao, S.M., Leo, G.J., Bernardin, L., & Unverzagt, F. (1991). Cognitive dysfunction in multiple sclerosis. I. Frequency, patterns, and prediction. Neurology, 41, 685691.Google Scholar
Robertson, I., Ward, T., Ridgeway, V., & Nimmo-Smith, I. (1994). The Test of Everyday Attention: Manual. Suffolk, UK: Thames Valley Test Company.
Rosti, E., Hämäläinen, P., Koivisto, K., & Hokkanen, L. (2006). The PASAT performance among patients with multiple sclerosis: Analyses of responding patterns using different scoring methods. Multiple Sclerosis, 12, 586593.Google Scholar
Rosti, E., Hämäläinen, P., Koivisto, K., & Hokkanen, L. (2007). PASAT in detecting cognitive impairment in relapsing-remitting MS. Applied Neuropsychology, 14, 101112.Google Scholar
Rudick, R., Antel, J., Confavreux, C., Cutter, G., Ellison, G., Fischer, J., Lublin, F., Miller, A., Petkau, J., Rao, S., Reingold, S., Syndulko, K., Thompson, A., Wallenberg, J., Weinshenker, B., & Willoughby, E. (1996). Clinical outcomes assessment in multiple sclerosis. Annals of Neurology, 40, 469479.Google Scholar
Rudick, R., Antel, J., Confavreux, C., Cutter, G., Ellison, G., Fischer, J., Lublin, F., Miller, A., Petkau, J., Rao, S., Reingold, S., Syndulko, K., Thompson, A., Wallenberg, J., Weinshenker, B., & Willoughby, E. (1997). Recommendations from the National Multiple Sclerosis Society Clinical Outcomes Assessment Task Force. Annals of Neurology, 42, 379382.Google Scholar
Ryan, L., Clark, C.M., Klonoff, H., Li, D., & Paty, D. (1996). Patterns of cognitive impairment in relapsing-remitting multiple sclerosis and their relationship to neuropathology on magnetic resonance images. Neuropsychology, 10, 176193.Google Scholar
Sintonen, H. (2001). The 15D instrument of health-related quality of life: Properties and applications. Annals of Medicine, 33, 328336.Google Scholar
Sperling, R.A., Guttmann, C.R., Hohol, M.J., Warfield, S.K., Jakab, M., Parente, M., Diamond, E.L., Daffner, K.R., Olek, M.J., Orav, E.J., Kikinis, R., Jolesz, F.A., & Weiner, H.L. (2001). Regional magnetic resonance imaging lesion burden and cognitive function in multiple sclerosis: A longitudinal study. Archives of Neurology, 58, 115121.Google Scholar
Stroop, J.R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643662.Google Scholar
U.S.War Department. (1944). Army individual test battery-manual of directions and scoring. Washington, DC: War Department, Adjutant General's Office.
Vilkki, J., Virtanen, S., Surma-Aho, O., & Servo, A. (1996). Dual task performance after focal cerebral lesions and closed head injuries. Neuropsychologia, 34, 10511056.Google Scholar
Wechsler, D. (1981). Wechsler Adult Intelligence Scale—Revised: Manual. New York: Psychological Corporation.
Wechsler, D. (1987). Wechsler Memory Scale—Revised: Manual. New York: Psychological Corporation.
Zivadinov, R., Sepcic, J., Nasuelli, D., De Masi, R., Bragadin, L.M., Tommasi, M.A., Zambito-Marsala, S., Moretti, R., Bratina, A., Ukmar, M., Pozzi-Mucelli, R.S., Grop, A., Cazzato, G., & Zorzon, M. (2001). A longitudinal study of brain atrophy and cognitive disturbances in the early phase of relapsing-remitting multiple sclerosis. Journal of Neurology, Neurosurgery, and Psychiatry, 70, 773780.Google Scholar