Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-13T01:49:38.827Z Has data issue: false hasContentIssue false

Theory of Mind in Mild Cognitive Impairment – Relationship with Limbic Structures and Behavioural Change

Published online by Cambridge University Press:  29 August 2019

Johannes C. Michaelian
Affiliation:
Healthy Brain Ageing Program, Brain and Mind Centre, University of Sydney, Sydney 2050, Australia Brain and Mind Centre, University of Sydney, Sydney 2050, Australia School of Psychology, Faculty of Science, University of Sydney, Sydney 2006, Australia Charles Perkins Centre, University of Sydney, 2006, Australia
Loren Mowszowski
Affiliation:
Healthy Brain Ageing Program, Brain and Mind Centre, University of Sydney, Sydney 2050, Australia Brain and Mind Centre, University of Sydney, Sydney 2050, Australia School of Psychology, Faculty of Science, University of Sydney, Sydney 2006, Australia
Adam J. Guastella
Affiliation:
Healthy Brain Ageing Program, Brain and Mind Centre, University of Sydney, Sydney 2050, Australia Central Clinical School, Faculty of Medicine, University of Sydney, Sydney 2006, Australia
Julie D. Henry
Affiliation:
School of Psychology, University of Queensland, Brisbane 4072, Australia
Shantel Duffy
Affiliation:
Brain and Mind Centre, University of Sydney, Sydney 2050, Australia Charles Perkins Centre, University of Sydney, 2006, Australia Central Clinical School, Faculty of Medicine, University of Sydney, Sydney 2006, Australia
Donna McCade
Affiliation:
Healthy Brain Ageing Program, Brain and Mind Centre, University of Sydney, Sydney 2050, Australia
Sharon L. Naismith*
Affiliation:
Healthy Brain Ageing Program, Brain and Mind Centre, University of Sydney, Sydney 2050, Australia Brain and Mind Centre, University of Sydney, Sydney 2050, Australia School of Psychology, Faculty of Science, University of Sydney, Sydney 2006, Australia Charles Perkins Centre, University of Sydney, 2006, Australia
*
Correspondence and reprint requests to: Sharon Naismith, Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, 94 Mallett St, Camperdown, NSW 2050, Australia. E-mail: sharon.naismith@sydney.edu.au

Abstract

Objectives:

Older adults presenting with mild cognitive impairment (MCI) have a higher risk of developing dementia and also demonstrate impairments in social cognition. This study sought to establish whether in people with MCI, poorer theory of mind (ToM) was associated with volumetric changes in the amygdala and hippocampus, as well as early changes in behaviour.

Methods:

One hundred and fourteen people with MCI and fifty-two older adult controls completed the Reading the Mind in the Eyes Test (RMET), while close informants (e.g., spouse/family member/friend/carer) described any current behavioural changes using the Revised Cambridge Behavioural Inventory (CBI-R). A subsample of participants completed structural magnetic resonance imaging (MRI).

Results:

The MCI group showed poorer performance on all neuropsychological tests administered, and moderate reductions on the RMET compared to the control group (d = .44), with greater reduction observed in those with amnestic compared to non-amnestic MCI (p = .03). While a robust correlation was identified between poorer RMET performance and smaller hippocampal volume in the control group (ρ = .53, p = .01), this relationship was not apparent in the MCI group (ρ = .21, p = .11). In the MCI group, poorer RMET performance was associated with poorer everyday skills (ρ = −.26, p = .01) assessed by the CBI-R.

Conclusions:

Our findings cross-validate previous reports that social cognitive deficits in ToM are a feature of MCI and also suggest that disruptions to broader neural networks are likely to be implicated. Furthermore, ToM deficits in MCI are associated with a decline in everyday skills such as writing or paying bills.

Type
Regular Research
Copyright
Copyright © INS. Published by Cambridge University Press, 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adolphs, R. (2010). What does the amygdala contribute to social cognition? Annals of the New York Academy of Sciences, 1191, 4261.CrossRefGoogle ScholarPubMed
Alexopoulos, P., Grimmer, T., Perneczky, R., Domes, G., & Kurz, A. (2006). Progression to dementia in clinical subtypes of mild cognitive impairment. Dementia and Geriatric Cognitive Disorders, 22(1), 2734.CrossRefGoogle ScholarPubMed
Allison, T., Puce, A., & McCarthy, G. (2000). Social perception from visual cues: Role of the STS region. Trends in Cognitive Sciences, 4(7), 267278.CrossRefGoogle ScholarPubMed
Baglio, F., Castelli, I., Alberoni, M., Blasi, V., Griffanti, L., Falini, A., Nemni, R, & Marchetti, A. (2012). Theory of mind in amnestic mild cognitive impairment: An FMRI study. Journal of Alzheimer’s Disease, 29(1), 2537.CrossRefGoogle Scholar
Baron-Cohen, S., Wheelwright, S., Hill, J., Raste, Y., & Plumb, I. (2001). The “Reading the Mind in the Eyes” test revised version: A study with normal adults, and adults with asperger syndrome or high-functioning autism. Journal of Child Psychology and Psychiatry, 42(2), 241251.CrossRefGoogle ScholarPubMed
Bediou, B., Ryff, I., Mercier, B., Milliery, M., Henaff, M.A., D’Amato, T., Bonnefoy, M., Vighetto, A., & Krolak-Salmon, P. (2009). Impaired social cognition in mild Alzheimer disease. Journal of Geriatric Psychiatry and Neurology, 22(2), 130140.CrossRefGoogle ScholarPubMed
Beer, J.S. & Ochsner, K.N. (2006). Social cognition: A multi level analysis. Brain Research, 1079(1), 98105.CrossRefGoogle ScholarPubMed
Bell-McGinty, S., Lopez, O.L., Meltzer, C., Scanlon, J.M., Whyte, E.M., Dekosky, S.T., & Becker, J.T. (2005). Differential cortical atrophy in subgroups of mild cognitive impairment. Archives of Neurology, 62(9), 13931397.CrossRefGoogle ScholarPubMed
Benton, A.L., Sivan, A.B., Hamsher, K.de S., Varney, N.R., & Spreen, O. (1994). Contributions to Neuropsychological Assessment: A Clinical Manual (2nd ed.). New York: Oxford University Press.Google Scholar
Berridge, K.C. & Kringelbach, M.L. (2013). Neuroscience of affect: Brain mechanisms of pleasure and displeasure. Current Opinion in Neurology, 23(3), 294303.CrossRefGoogle ScholarPubMed
Bogdanova, Y., Yee, M.K., Ho, V.T., & Cicerone, K.D. (2016). Computerized cognitive rehabilitation of attention and executive function in acquired brain injury: A systematic review. The Journal of Head Trauma Rehabilitation, 31(6), 419433.CrossRefGoogle ScholarPubMed
Bora, E. & Yener, G.G. (2017). Meta-analysis of social cognition in mild cognitive impairment. Journal of Geriatric Psychiatry and Neurology, 30(4), 206213.CrossRefGoogle ScholarPubMed
Braak, H., Alafuzoff, I., Arzberger, T., Kretzschmar, H., & Del Tredici, K. (2006). Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathologica, 112(4), 389404.CrossRefGoogle ScholarPubMed
Brayne, C., Ince, P.G., Keage, H.A.D., McKeith, I.G., Matthews, F.E., Polvikoski, T., & Sulkava, R. (2010). Education, the brain and dementia: Neuroprotection or compensation? EClipSE Collaborative Members. Brain, 133(8), 22102216.CrossRefGoogle ScholarPubMed
Brodaty, H. (1997). Caregivers and behavioral disturbances: Effects and interventions. International Psychogeriatrics, 8(S3), 455458.CrossRefGoogle Scholar
Cacciotti-Saija, C., Langdon, R., Ward, P.B., Hickie, I.B., Scott, E.M., Naismith, S.L., Moore, L., Alvares, G.A., Redoblado-Hodge, M.A., & Guastella, A.J. (2015). A double-blind randomized controlled trial of oxytocin nasal spray and social cognition training for young people with early psychosis. Schizophrenia Bulletin, 41(2), 483493.CrossRefGoogle ScholarPubMed
Calder, A.J., Keane, J., Manly, T., Sprengelmeyer, R., Scott, S., Nimmo-Smith, I., & Young, A.W. (2003). Facial expression recognition across the adult life span. Neuropsychologia, 41(2), 195202.CrossRefGoogle ScholarPubMed
Carton, J.S., Kessler, E.A., & Pape, C.L. (1999). Nonverbal decoding skills and relationship well-being in adults. Journal of Nonverbal Behavior, 23(1), 91100.CrossRefGoogle Scholar
Chalah, M.A., Kauv, P., Lefaucheur, J.-P., Hodel, J., Créange, A., & Ayache, S.S. (2017). Theory of mind in multiple sclerosis: A neuropsychological and MRI study. Neuroscience Letters, 658, 108113.CrossRefGoogle ScholarPubMed
Delis, D.C., Kaplan, E., & Kramer, J.H. (2001). Delis–Kaplan Executive Function System (D-KEFS): Examiner’s Manual. San Antonio, TX: The Psychological Corporation.Google Scholar
Duffy, S.L., Lagopoulos, J., Hickie, I.B., Diamond, K., Graeber, M.B., Lewis, S.J., & Naismith, S.L. (2014). Glutathione relates to neuropsychological functioning in mild cognitive impairment. Alzheimers & Dementia, 10(1), 6775.CrossRefGoogle ScholarPubMed
Dunn, C.J., Duffy, S.L., Hickie, I.B., Lagopoulos, J., Lewis, S.J., Naismith, S.L., & Shine, J.M. (2014). Deficits in episodic memory retrieval reveal impaired default mode network connectivity in amnestic mild cognitive impairment. NeuroImage: Clinical, 4, 473480.CrossRefGoogle ScholarPubMed
Elcombe, E.L., Lagopoulos, J., Duffy, S.L., Lewis, S.J., Norrie, L., Hickie, I.B., & Naismith, S.L. (2015). Hippocampal volume in older adults at risk of cognitive decline: The role of sleep, vascular risk, and depression. Journal of Alzheimer’s Disease, 44(4), 12791290.CrossRefGoogle ScholarPubMed
Elferink, M.W., van Tilborg, I., & Kessels, R.P. (2015). Perception of emotions in mild cognitive impairment and Alzheimer’s dementia: Does intensity matter? Translational Neuroscience, 6(1), 139149.CrossRefGoogle ScholarPubMed
Fan, Y., Duncan, N.W., de Greck, M., & Northoff, G. (2011). Is there a core neural network in empathy? An fMRI based quantitative meta-analysis. Neuroscience & Biobehavioral Reviews, 35(3), 903911.CrossRefGoogle Scholar
Finger, E.C., MacKinley, J., Blair, M., Oliver, L.D., Jesso, S., Tartaglia, M.C., Borrie, M., Wells, J., Dziobek, I., Pasternak, S., & Mitchell, D.G. (2015). Oxytocin for frontotemporal dementia: A randomized dose-finding study of safety and tolerability. Neurology, 84(2), 174181.CrossRefGoogle ScholarPubMed
Folstein, M.F., Folstein, S.E., & McHugh, P.R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189198.CrossRefGoogle ScholarPubMed
Fujie, S., Namiki, C., Nishi, H., Yamada, M., Miyata, J., Sakata, D., Sawamoto, N., Fukuyama, H., Hayashi, T., & Murai, T. (2008). The role of the uncinate fasciculus in memory and emotional recognition in amnestic mild cognitive impairment. Dementia and Geriatric Cognitive Disorders, 26(5), 432439.CrossRefGoogle ScholarPubMed
Gamer, M. & Buchel, C. (2009). Amygdala activation predicts gaze toward fearful eyes. The Journal of Neuroscience, 29(28), 91239126.CrossRefGoogle ScholarPubMed
Gauthier, S., Reisberg, B., Zaudig, M., Petersen, R.C., Ritchie, K., Broich, K., Belleville, S., Brodaty, H., Bennett, D., Chertkow, H., & Cummings, J.L. (2006). Mild cognitive impairment. The Lancet, 367(9518), 12621270.CrossRefGoogle ScholarPubMed
Goodglass, H., Kaplan, E., & Weintraub, S. (1983). Boston Naming Test. Philadelphia, PA: Lea & Febiger.Google Scholar
Guastella, A.J., Einfeld, S.L., Gray, K.M., Rinehart, N.J., Tonge, B.J., Lambert, T.J., & Hickie, I.B. (2010). Intranasal oxytocin improves emotion recognition for youth with autism spectrum disorders. Biological Psychiatry, 67(7), 692694.CrossRefGoogle ScholarPubMed
Guastella, A.J. & MacLeod, C. (2012). A critical review of the influence of oxytocin nasal spray on social cognition in humans: Evidence and future directions. Hormones and Behavior, 61(3), 410418.CrossRefGoogle ScholarPubMed
Guastella, A.J., Mitchell, P.B., & Mathews, F. (2008). Oxytocin enhances the encoding of positive social memories in humans. Biological Psychiatry, 64(3), 256258.CrossRefGoogle ScholarPubMed
Guastella, A.J., Ward, P.B., Hickie, I.B., Shahrestani, S., Hodge, M.A., Scott, E.M., & Langdon, R. (2015). A single dose of oxytocin nasal spray improves higher-order social cognition in schizophrenia. Schizophrenia Research, 168(3), 628633.CrossRefGoogle ScholarPubMed
Heitz, C., Noblet, V., Phillipps, C., Cretin, B., Vogt, N., Philippi, N., Kemp, J., de Petigny, X., Bilger, M., Demuynck, C., Martin-Hunyadi, C., Armspach, J.P., & Blanc, F. (2016). Cognitive and affective theory of mind in dementia with Lewy bodies and Alzheimer’s disease. Alzheimer’s Research & Therapy, 8, 10.CrossRefGoogle ScholarPubMed
Henry, J.D., Ruffman, T., McDonald, S., O’Leary, M.A., Phillips, L.H., Brodaty, H., & Rendell, P.G. (2008). Recognition of disgust is selectively preserved in Alzheimer’s disease. Neuropsychologia, 46(5), 13631370.CrossRefGoogle ScholarPubMed
Henry, J.D., von Hippel, W., Molenberghs, P., Lee, T., & Sachdev, P.S. (2016). Clinical assessment of social cognitive function in neurological disorders. Nature Reviews Neurology, 12, 28.CrossRefGoogle ScholarPubMed
Hosmer, Jr , D.W., Lemeshow, S., & Sturdivant, R.X. (2013). Applied Logistic Regression, Vol. 398. Hoboken, NJ: John Wiley & Sons.CrossRefGoogle Scholar
Hunderfund, A.L., Roberts, R.O., Slusser, T.C., Leibson, C.L., Geda, Y.E., Ivnik, R.J., Tangalos, E.G., & Petersen, R.C. (2006). Mortality in amnestic mild cognitive impairment: A prospective community study. Neurology, 67(10), 17641768.CrossRefGoogle ScholarPubMed
Immordino-Yang, M.H. & Singh, V. (2013). Hippocampal contributions to the processing of social emotions. Human Brain Mapping, 34(4), 945955.CrossRefGoogle ScholarPubMed
Isaacowitz, D.M., Lockenhoff, C.E., Lane, R.D., Wright, R., Sechrest, L., Riedel, R., & Costa, P.T. (2007). Age differences in recognition of emotion in lexical stimuli and facial expressions. Psychology and Aging, 22(1), 147159.CrossRefGoogle ScholarPubMed
Kanwisher, N. & Yovel, G. (2006). The fusiform face area: A cortical region specialized for the perception of faces. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1476), 21092128.CrossRefGoogle ScholarPubMed
Kohler, C.G., Anselmo-Gallagher, G., Bilker, W., Karlawish, J., Gur, R.E., & Clark, C.M. (2005). Emotion-discrimination deficits in mild Alzheimer disease. The American Journal of Geriatric Psychiatry, 13(11), 926933.CrossRefGoogle ScholarPubMed
Laisney, M., Bon, L., Guiziou, C., Daluzeau, N., Eustache, F., & Desgranges, B. (2012). Cognitive and affective Theory of Mind in mild to moderate Alzheimer’s disease. Journal of Neuropsychology, 7(1), 107120.CrossRefGoogle ScholarPubMed
Laurita, A.C. & Nathan Spreng, R. (2017). The hippocampus and social cognition. In Hannula, D.E. & Duff, M.C. (Eds.), The hippocampus from cells to systems: structure, connectivity, and functional contributions to memory and flexible cognition, (pp. 537558). Cham: Springer International Publishing.CrossRefGoogle Scholar
LeDoux, J.E. (2000). Emotion circuits in the brain. Annual Review of Neuroscience, 23, 155184.CrossRefGoogle Scholar
Lezak, M.D. (1995). Neuropsychological Assessment. New York: Oxford University Press.Google Scholar
Markesbery, W.R. (2010). Neuropathologic alterations in mild cognitive impairment: A review. Journal of Alzheimer’s Disease, 19(1), 221228.CrossRefGoogle ScholarPubMed
Mars, R.B., Neubert, F.-X., Noonan, M.P., Sallet, J., Toni, I., & Rushworth, M.F.S. (2012). On the relationship between the “default mode network” and the “social brain”. Frontiers in Human Neuroscience, 6, 189.CrossRefGoogle ScholarPubMed
Martinez, M., Multani, N., Anor, C.J., Misquitta, K., Tang-Wai, D.F., Keren, R., Fox, S., Lang, A.E., & Tartaglia, M.C. (2018). Emotion detection deficits and decreased empathy in patients with Alzheimer’s disease and Parkinson’s disease affect caregiver mood and burden. Frontiers in Aging Neuroscience, 10, 120.CrossRefGoogle ScholarPubMed
McCade, D., Savage, G., Guastella, A., Hickie, I.B., Lewis, S.J., & Naismith, S.L. (2013a). Emotion recognition deficits exist in mild cognitive impairment, but only in the amnestic subtype. Psychology and Aging, 28(3), 840852.CrossRefGoogle ScholarPubMed
McCade, D., Savage, G., Guastella, A., Hickie, I.B., Lewis, S.J., & Naismith, S.L. (2013b). Emotion recognition in mild cognitive impairment: Relationship to psychosocial disability and caregiver burden. Journal of Geriatric Psychiatry and Neurology, 26(3), 165173.CrossRefGoogle ScholarPubMed
McCade, D., Savage, G., & Naismith, S.L. (2011). Emotion recognition in mild cognitive impairment. Dementia and Geriatric Cognitive Disorders, 32(4), 257266.CrossRefGoogle ScholarPubMed
McDonald, S., Bornhofen, C., Shum, D., Long, E., Saunders, C., & Neulinger, K. (2006). Reliability and validity of The Awareness of Social Inference Test (TASIT): A clinical test of social perception. Disability and Rehabilitation, 28(24), 15291542.CrossRefGoogle ScholarPubMed
Montagrin, A., Saiote, C., & Schiller, D. (2018). The social hippocampus. Hippocampus, 28(9), 672679.CrossRefGoogle ScholarPubMed
Moreau, N., Rauzy, S., Bonnefoi, B., Renié, L., Martinez-Almoyna, L., Viallet, F., & Champagne-Lavau, M. (2015). Different patterns of theory of mind impairment in mild cognitive impairment. Journal of Alzheimer’s Disease, 45(2), 581597.CrossRefGoogle ScholarPubMed
Paradise, M., McCade, D., Hickie, I.B., Diamond, K., Lewis, S.J.G., & Naismith, S.L. (2015). Caregiver burden in mild cognitive impairment. Aging and Mental Health, 19(1), 7278.CrossRefGoogle ScholarPubMed
Perry, D., Hendler, T., & Shamay-Tsoory, S.G. (2011). Projecting memories: The role of the hippocampus in emotional mentalizing. Neuroimage, 54(2), 16691676.CrossRefGoogle ScholarPubMed
Petersen, R.C. (2004). Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine, 256(3), 183194.CrossRefGoogle ScholarPubMed
Petersen, R.C. & Negash, S. (2008). Mild cognitive impairment: An overview. CNS Spectrums, 13(1), 4553.CrossRefGoogle ScholarPubMed
Petersen, R.C., Parisi, J.E., Dickson, D.W., Johnson, K.A., Knopman, D.S., Boeve, B.F., Jicha, G.A., Ivnik, R.J., Smith, G.E., Tangalos, E.G., Braak, H., & Kokmen, E. (2006). Neuropathologic features of amnestic mild cognitive impairment. Archives of Neurology, 63(5), 665672.CrossRefGoogle ScholarPubMed
Phillips, L.H., Scott, C., Henry, J.D., Mowat, D., & Bell, J.S. (2010). Emotion perception in Alzheimer’s disease and mood disorder in old age. Psychology and Aging, 25(1), 3847.CrossRefGoogle ScholarPubMed
Poletti, M. & Bonuccelli, U. (2013). Alteration of affective theory of mind in amnestic mild cognitive impairment. Journal of Neuropsychology, 7(1), 121131.CrossRefGoogle ScholarPubMed
Reitan, R.M. (1979). Manual for Administration of Neuropsychological Test Batteries for Adults and Children. Tucson, AZ: Neuropsychology Laboratory.Google Scholar
Roy, M., Shohamy, D., & Wager, T.D. (2012). Ventromedial prefrontal-subcortical systems and the generation of affective meaning. Trends in Cognitive Sciences, 16(3), 147156.CrossRefGoogle ScholarPubMed
Ruff, R.M., Light, R.H., Parker, S.B., & Levin, H.S. (1996). Benton controlled oral word association test: Reliability and updated norms. Archives of Clinical Neuropsychology, 11(4), 329338.CrossRefGoogle ScholarPubMed
Schilbach, L., Eickhoff, S.B., Rotarska-Jagiela, A., Fink, G.R., & Vogeley, K. (2008). Minds at rest? Social cognition as the default mode of cognizing and its putative relationship to the “default system” of the brain. Consciousness and Cognition, 17(2), 457467.CrossRefGoogle Scholar
Schott, J.M., Kennedy, J., & Fox, N.C. (2006). New developments in mild cognitive impairment and Alzheimer’s disease. Current Opinion in Neurology, 19(6), 552558.CrossRefGoogle ScholarPubMed
Serrano, C.M., Dillon, C., Leis, A., Taragano, F.E., & Allegri, R.F. (2013). Mild cognitive impairment: Risk of dementia according to subtypes. Actas Españolas de Psiquiatría, 41(6), 330339.Google ScholarPubMed
Sestieri, C., Corbetta, M., Romani, G.L., & Shulman, G.L. (2011). Episodic memory retrieval, parietal cortex, and the default mode network: Functional and topographic analyses. The Journal of Neuroscience, 31(12), 44074420.CrossRefGoogle ScholarPubMed
Singer, T., Seymour, B., O’Doherty, J., Kaube, H., Dolan, R.J., & Frith, C.D. (2004). Empathy for pain involves the affective but not sensory components of pain. Science, 303(5661), 11571162.CrossRefGoogle ScholarPubMed
Sodian, B. & Kristen, S. (2010). Theory of Mind. In Glatzeder, B., Goel, V., & Müller, A. (Eds.), Towards a theory of thinking: building blocks for a conceptual framework (pp. 189201). Berlin, Heidelberg: Springer Berlin Heidelberg.CrossRefGoogle Scholar
Spoletini, I., Marra, C., Di Iulio, F., Gianni, W., Sancesario, G., Giubilei, F., Trequattrini, A., Bria, P., Caltagirone, C., & Spalletta, G. (2008). Facial emotion recognition deficit in amnestic mild cognitive impairment and Alzheimer disease. The American Journal of Geriatric Psychiatry, 16(5), 389398.CrossRefGoogle ScholarPubMed
Tombaugh, T.N., Kozak, J., & Rees, L. (1999). Normative data stratified by age and education for two measures of verbal fluency: FAS and animal naming. Archives of Clinical Neuropsychology, 14(2), 167177.Google ScholarPubMed
Tsang, R.S., Diamond, K., Mowszowski, L., Lewis, S.J., & Naismith, S.L. (2012). Using informant reports to detect cognitive decline in mild cognitive impairment. International Psychogeriatrics, 24(6), 967973.CrossRefGoogle ScholarPubMed
Van Overwalle, F. (2009). Social cognition and the brain: A meta-analysis. Human Brain Mapping, 30(3), 829858.CrossRefGoogle ScholarPubMed
Wear, H.J., Wedderburn, C.J., Mioshi, E., Williams-Gray, C.H., Mason, S.L., Barker, R.A., & Hodges, J.R. (2008). The cambridge behavioural inventory revised. Dementia & Neuropsychologia, 2(2), 102107.CrossRefGoogle ScholarPubMed
Wechsler, D. (1997). Manual for the Wechsler Adult Intelligence Scale - Third Edition. San Antonio, TX: The Psychological Corporation.Google Scholar
Wechsler, D. (2001). Wechsler Test of Adult Reading: WTAR. San Antonio, TX: Pearson Education, Inc.Google Scholar
Weiss, E.M., Kohler, C.G., Vonbank, J., Stadelmann, E., Kemmler, G., Hinterhuber, H. & Marksteiner, J. (2008). Impairment in emotion recognition abilities in patients with mild cognitive impairment, early and moderate Alzheimer disease compared with healthy comparison subjects. The American Journal of Geriatric Psychiatry, 16(12), 974980.CrossRefGoogle ScholarPubMed
Winblad, B., Palmer, K., Kivipelto, M., Jelic, V., Fratiglioni, L., Wahlund, L.O., Nordberg, A., Bäckman, L., Albert, M., Almkvist, O., Arai, H., Basun, H., Blennow, K., de Leon, M., DeCarli, C., Erkinjuntti, T., Giacobini, E., Graff, C., Hardy, J., Jack, C., Jorm, A., Ritchie, K., van Duijn, C., Visser, P. & Petersen, R.C. (2004). Mild cognitive impairment--beyond controversies, towards a consensus: Report of the International Working Group on Mild Cognitive Impairment. Journal of Internal Medicine, 256(3), 240246.CrossRefGoogle Scholar
Zigmond, A.S. & Snaith, R.P. (1983). The hospital anxiety and depression scale. Acta Psychiatrica Scandinavica, 67(6), 361370.CrossRefGoogle ScholarPubMed