Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-ms7nj Total loading time: 0.489 Render date: 2022-08-09T23:10:55.614Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Sponge species composition of north-east Atlantic cold-water coral reefs compared in a bathyal to inshore gradient

Published online by Cambridge University Press:  30 October 2013

R.W.M. van Soest*
Affiliation:
Naturalis Biodiversity Center, PO Box 9417, 2300RA Leiden, The Netherlands
N.J. de Voogd
Affiliation:
Naturalis Biodiversity Center, PO Box 9417, 2300RA Leiden, The Netherlands
*
Correspondence should be addressed to: R.W.M. van Soest, Naturalis Biodiversity Center, PO Box 9417, 2300RA Leiden, The Netherlands email: rob.vansoest@naturalis.nl

Abstract

A comparison is made of sponge diversity and abundance in nine cold-water coral reef locations situated in four regions of the north-east Atlantic, Rockall Bank (two reef locations, both deep, oceanic), Porcupine Bank (two locations, both deep, oceanic), Mingulay (two reef locations, both shallow, near-shore), Skagerrak (three reef locations, all shallow, near-shore). Literature data from two reefs were used to supplement our own data from seven reef locations. Geographical distance between the regions may be summarized as Rockall Bank < Porcupine << Mingulay <<< Skagerrak. The first three regions are all situated west of the British Isles, and prevailing current patterns and bottom conditions would make direct larval transport between all three a distinct possibility. The fourth region, Skagerrak, is situated away from the Atlantic regions, with larval contact hampered by long distances over predominantly shallow sedimented sea bottoms. Accordingly, we expected the largest taxon turnover to be between the three Atlantic regions and the Skagerrak localities. However, cluster analysis and multidimensional scaling clearly show, that shelf reefs at Mingulay were faunistically closer to the geographically- distant shelf reefs at Skagerrak than to the geographically closer bathyal reefs of the Porcupine–Rockall area. Further research is necessary to determine whether depth is a proxy for other abiotic factors such as oceanic circulation or trophic conditions.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alander, H. (1942) Sponges from the Swedish west-coast and adjacent waters. PhD thesis. University of Lund, Sweden.Google Scholar
Cárdenas, P. (2010) Phylogeny, taxonomy and evolution of the Astrophorida (Porifera, Demospongiae). PhD dissertation. University of Bergen, Norway.Google Scholar
Carter, H.J. (1874) Descriptions and figures of deep-sea sponges and their spicules from the Atlantic Ocean, dredged up on board H.M.S. ‘Porcupine’, chiefly in 1869; with figures and descriptions of some remarkable spicules from the Agulhas Shoal and Colon, Panama. Annals and Magazine of Natural History (4)14(79), 207221, 245–257.Google Scholar
Carter, H.J. (1876) Descriptions and figures of deep-sea sponges and their spicules, from the Atlantic Ocean, dredged up on board H.M.S. ‘Porcupine’, chiefly in 1869 (concluded). Annals and Magazine of Natural History (4)18(105), 226240; (106), 307–324; (107), 388–410; (108), 458–479.Google Scholar
Clarke, K.R. and Gorley, R.N. (2006) PRIMER v.6: user manual/tutorial. Plymouth: PRIMER-E.Google Scholar
Cleary, D.F.R. and de Voogd, N.J. (2007) Environmental determination of sponge assemblages in the Spermonde Archipelago, Indonesia. Journal of the Marine Biological Association of the United Kingdom 87, 16691676.CrossRefGoogle Scholar
Ellett, D.J. and Martin, J.H.A. (1973) The physical and chemical oceanography of the Rockall Channel. Deep-Sea Research 20, 585625.Google Scholar
Freiwald, A. and Roberts, J.M. (2005) Cold-water corals and ecosystems. Berlin, Heidelberg, New York: Springer, Erlangen Earth Conference Series.CrossRefGoogle Scholar
Fristedt, K. (1885) Bidrag till Kännedomen om de vid Sveriges vestra Kust lefvande Spongiae. Kungliga Svenska vetenskapsakademiens Handlingar 21, 156.Google Scholar
Goodwin, C.E., Picton, B.E. and van Soest, R.W.M. (2011) Hymedesmia (Porifera: Demospongiae: Poecilosclerida) from Irish and Scottish cold-water coral reefs, with a description of five new species. Journal of the Marine Biological Association of the United Kingdom 91, 979997.CrossRefGoogle Scholar
Hogg, M.M., Tendal, O.S., Conway, K.W., Pompon, S.A., van Soest, R.W.M., Gutt, J., Krautter, M. and Roberts, J.M. (2011) Deep-sea sponge grounds: reservoirs of biodiversity. UNEP-WCMC Biodiversity Series No. 32. Cambridge: UNEP-WCMC. Available at: http://www.unep-wcmc.org/biodikersity-series-3264.htmlGoogle Scholar
Hooper, J.N.A. and van Soest, R.W.M.(eds) (2002) Systema Porifera: a guide to the classification of sponges. New York: Kluwer Academic/Plenum.CrossRefGoogle Scholar
Jonsson, L.G., Nilsson, P.G., Floruta, F. and Lundälv, T. (2004) Distributional patterns of macro- and megafauna associated with a reef of the cold-water coral Lophelia pertusa on the Swedish west coast. Marine Ecology Progress Series 284, 163171.CrossRefGoogle Scholar
Könnecker, G. and Freiwald, A. (2005) Plectroninia celtica n. sp. (Calcarea, Minchinellidae), a new species of ‘pharetronid’ sponge from bathyal depths in the northern Porcupine Seabight, NE Atlantic. Facies 51, 5359.CrossRefGoogle Scholar
Le-Goff-Vitry, M.C., Pybus, O.G. and Rogers, A.D. (2004) Genetic structure of the deep-sea coral Lophelia pertusa in the northeast Atlantic revealed by microsatellites and internal transcribed spacer sequences. Molecular Ecology 13, 537549.CrossRefGoogle ScholarPubMed
Longo, C., Mastrototaro, F. and Corriero, G. (2005) Sponge fauna associated with a Mediterranean deep-sea coral bank. Journal of the Marine Biological Association of the United Kingdom 85, 13411352.CrossRefGoogle Scholar
Lundbeck, W. (1902) Porifera. (Part I) Homorrhaphidae and Heterorrhaphidae. The Danish Ingolf–Expedition 6(1), 1108.Google Scholar
Lundbeck, W. (1905) Porifera. (Part II) Desmacidonidae (pars). The Danish Ingolf–Expedition 6(2), 1219.Google Scholar
Lundbeck, W. (1910) Porifera. (Part III) Desmacidonidae (pars). The Danish Ingolf–Expedition 6(1), 1124.Google Scholar
Maier, C. (2006) Biology and ecosystem functioning of cold water coral bioherms at Mingulay (Hebrides), NE Atlantic. Cruise Report, BIOSYS 2006 Cruise 64PE250 on R/V Pelagia, Oban–Oban, 7–23 July 2006. Texel: Royal Netherlands Institute for Sea Research.Google Scholar
Maier, C. (2007) Sponge diversity in cold water coral bioherms and calcification rate and prokaryote–coral associations of Lophelia pertusa (Skagerrak, North Sea). Cruise Report, BIOSYS 2007 Cruise 64PE263 on R/V Pelagia, Lysekill–Lysekill, 7–13 March 2007. Texel: Royal Netherlands Institute for Sea Research.Google Scholar
Mienis, F. and De Haas, H. (2004) Report of cruise ‘Moundforce 2004’ with Royal R.V. ‘Pelagia’. Cruise 64PE229, Cadiz–Galway, 15 August–9 September. Texel: Royal Netherlands Institute for Sea Research.Google Scholar
Mortensen, P.B., Roberts, J.M. and Sundt, R.C. (2000) Video-assisted grabbing: a minimally destructive method of sampling azooxanthellate coral banks. Journal of the Marine Biological Association of the United Kingdom 80, 365366.CrossRefGoogle Scholar
Pingree, R.D. (1993) Flow of surface waters to the west of the British Isles and in the Bay of Biscay. Deep-Sea Research II 40, 369388.CrossRefGoogle Scholar
Reitner, J. and Hoffmann, F. (2003) Porifera-Zonierungen in Kaltwasser–Korallenriffen (Sula–Rücken, Norwegen). In Gradstein, S.R., Willmann, R. and Zizka, G. (eds) Biodiversitätsforschung: die Entschlüsselung der Artenvielvalt in Raum und Zeit. Kleine Senckenberg-Reihe 45. Stuttgart: Schweizerbart'sche Verlagsbuchhandlung, pp. 7587.Google Scholar
Reveillaud, J., Remerie, T., van Soest, R., Erpenbeck, D., Cárdenas, P., Derycke, S., Xavier, J.R., Rigaux, A. and Vanreusel A. (2010) Species boundaries and phylogenetic relationships between Atlanto-Mediterranean shallow-water and deep-sea coral associated Hexadella species (Porifera, Ianthellidae). Molecular Phylogeny and Evolution 56, 104114.CrossRefGoogle Scholar
Reveillaud, J., van Soest, R., Derycke, S., Picton, B., Rigaux, A. and Vanreusel, A. (2011) Phylogenetic relationships among NE Atlantic Plocamionida Topsent (1927) (Porifera, Poecilosclerida): under-estimated diversity in reef ecosystems. PLoS ONE 6 (2), e16533, 110.CrossRefGoogle ScholarPubMed
Roberts, J.M., Brown, C.J., Long, D. and Bates, C.R. (2005) Acoustic mapping using a multibeam echosounder reveals coldwater coral reefs and surrounding habitats. Coral Reefs 24, 654669.CrossRefGoogle Scholar
Roberts, J.M., Davies, A.J., Henry, L.A., Dodds, L.A., Duineveld, G.C.A., Lavaleye, M.S.S., Maier, C., van Soest, R.W.M., Bergman, M.J.N., Hünerbach, V., Huvenne, V.A.I., Watmough, T., Long, D., Green, S.L. and Van Haren, H. (2009) Mingulay reef complex: an interdisciplinary study of cold-water coral habitat, hydrography and biodiversity. Marine Ecology Progress Series 397, 139151; Supplement 1, 1–3.CrossRefGoogle Scholar
Sars, G.O. (1872) On some remarkable forms of animal life from the great deeps off the Norwegian coast. Part 1, partly from posthumous manuscripts of the late Prof. Mich. Sars. University Programme for the first half-year, 1869. Christiania: Brøgger and Christie.Google Scholar
Søiland, H. (2004) Large scale circulation and water masses in the North Atlantic. Available at: http://www.mar-eco.no/__data/page/291/Large_scale_circulation_and_water_masses_in_the_North_Atlantic.pdf (accessed 2 October 2013).Google Scholar
Spalding, M.D., Fox, H.E., Allen, G.R., Davidson, N., Ferdaña, Z.A., Finlayson, M., Halpern, B.S., Jorge, M.A., Lombana, A., Lourie, S.A., Martin, K.D., McManus, E., Molnar, J., Recchia, C.A. and Robertson, J. (2007) Marine ecoregions of the world: a bioregionalization of coastal and shelf Areas. Bioscience 57, 573583.CrossRefGoogle Scholar
Stephens, J. (1915) Sponges of the west coast of Ireland. I. The Triaxonia and part of the Tetraxonida. Fisheries Ireland Scientific Investigations 1914(4), 143.Google Scholar
Stephens, J. (1921) Sponges of the coasts of Ireland. II. The Tetraxonida (concluded). Scientific Investigations of the Fisheries Branch. Department of Agriculture for Ireland 1920, 175.Google Scholar
Topsent, E. (1892) Contribution à l'étude des Spongiaires de l'Atlantique Nord (Golfe de Gascogne, Terre-Neuve, Açores). Résultats des campagnes Scientifiques accomplies par le Prince Albert I Monaco 2, 1165.Google Scholar
Topsent, E. (1904) Spongiaires des Açores. Résultats des Campagnes Scientifiques accomplies par le Prince Albert I Monaco 25, 1280.Google Scholar
Topsent, E. (1913) Spongiaires provenant des campagnes scientifiques de la ‘Princesse Alice’ dans les Mers du Nord (1898–1899, 1906–1907). Résultats des Campagnes Scientifiques accomplies par le Prince Albert I Monaco 45, 167.Google Scholar
Topsent, E. (1928) Spongiaires de l'Atlantique et de la Méditerranée provenant des croisières du Prince Albert 1er de Monaco. Résultats des Campagnes Scientifiques accomplies par le Prince Albert I Monaco 74, 1376.Google Scholar
Van Duyl, F.C. and Duineveld, G.C.A. (2005) Biodiversity, ecosystem functioning and food web complexity of deep water coral reefs in the NE Atlantic (Rockall Bank and Porcupine Bank). BIOSYS-HERMES 2005 cruise report with R.V. Pelagia. Cruise 64PE 238, Galway–Texel, 21 June–21 July 2005, Royal NIOZ, The Netherlands.Google Scholar
van Soest, R.W.M. and Beglinger, E.J. (2009) New bioeroding sponges from Mingulay coldwater reefs, north-west Scotland. Journal of the Marine Biological Association of the United Kingdom 89, 329335.CrossRefGoogle Scholar
van Soest, R.W.M. and Lavaleye, M.S.S. (2005) Diversity and abundance of sponges in bathyal coral reefs of Rockall Bank, NE Atlantic, from boxcore samples. Marine Biology Research 1, 338349.CrossRefGoogle Scholar
van Soest, R.W.M., Cleary, D.F.R., De Kluijver, M.J., Lavaleye, M.S.S., Maier, C. and Van Duyl, F.C. (2007a) Sponge diversity and community composition in Irish bathyal coral reefs. Contributions to Zoology 76, 121142.Google Scholar
van Soest, R.W.M., Van Duyl, F.C., Maier, C., Lavaleye, M., Beglinger, E.J. and Tabachnick, K.R. (2007b) Mass occurrence of Rossella nodastrella Topsent on bathyal coral reefs of Rockall Bank, W of Ireland (Lyssacinosida, Hexactinellida). In Custódio, M.R., Lôbo-Hajdu, G., Hajdu, E. and Muricy, G. (eds) Porifera research: biodiversity, innovation and sustainability. Rio de Janeiro: Museu Nacional, pp. 645652.Google Scholar
van Soest, R.W.M., Boury-Esnault, N., Vacelet, J., Dohrmann, M., Erpenbeck, D., de Voogd, N.J., Santodomingo, N., Vanhoorne, B., Kelly, M. and Hooper, J.N.A. (2012a) Global diversity of sponges (Porifera). PLoS ONE 7 e35105, 23 p.CrossRefGoogle Scholar
van Soest, R.W.M., Boury-Esnault, N., Hooper, J.N.A., Rützler, K., de Voogd, N.J., Alvarez de Glasby, B., Hajdu, E., Pisera, A.B., Manconi, R., Schoenberg, C., Janussen, D., Tabachnick, K.R., Klautau, M., Picton, B., Kelly, M., Vacelet, J., Dohrmann, M. and Díaz, M.C. (2012b) World Porifera database. Available at: http://www.marinespecies.org/porifera (accessed 2 October 2013).Google Scholar
Xavier, J. and van Soest, R. (2007) Demosponge fauna of Ormonde and Gettysburg Seamounts (Gorringe Bank, north-east Atlantic): diversity and zoogeographical affinities. Journal of the Marine Biological Association of the United Kingdom 87, 16431653.CrossRefGoogle Scholar
Xavier, J.R. and van Soest, R.W.M. (2012) Diversity patterns and zoogeography of the Northeast Atlantic and Mediterranean shallow-water sponge fauna. Hydrobiologia 687, 107125.CrossRefGoogle Scholar
12
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Sponge species composition of north-east Atlantic cold-water coral reefs compared in a bathyal to inshore gradient
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Sponge species composition of north-east Atlantic cold-water coral reefs compared in a bathyal to inshore gradient
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Sponge species composition of north-east Atlantic cold-water coral reefs compared in a bathyal to inshore gradient
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *