Skip to main content Accessibility help
Hostname: page-component-768ffcd9cc-7jw6s Total loading time: 0.351 Render date: 2022-12-01T00:02:52.832Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Temporal variation in the fatty acid composition of ovigerous females and embryos of the squat lobster Pleuroncodes monodon (Decapoda, Munididae)

Published online by Cambridge University Press:  14 August 2017

Miguel Bascur
Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile Programa de Magíster en Ecología Marina, Universidad Católica de la Santísima Concepción, Concepción, Chile
Fabián Guzmán
Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile Programa de Magíster en Medio Ambiente, Universidad de Santiago de Chile, Santiago, Chile
Sergio Mora
Instituto de Fomento Pesquero (IFOP), Talcahuano, Chile
Pepe Espinoza
Laboratorio de ecología trófica, Instituto del Mar del Perú – Esquina Gamarra y Gral, Valle s/n, Chucuito, Apartado 22, Callao, Lima, Peru Facultad de Ciencias Biológicas y Veterinarias, Escuela de Biología Marina, Universidad Científica del Sur – Av. Antigua Carretera Panamericana Sur km 19, Villa El Salvador, Lima 42, Peru
Ángel Urzúa*
Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS) Universidad Católica de la Santísima Concepción, Concepción, Chile
Correspondence should be addressed to: Á. Urzúa, Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile email:


Pleuroncodes monodon, an important fishery resource and key species in the Humboldt Current Large Marine ecosystem, has a prolonged reproductive period from winter until end of summer, and during this time females incubating their embryos are exposed to seasonal variation in food availability and in temperature. Additionally, in order to ensure successful reproduction and survival of embryos, changes occur in the main internal reserves and/or sources of energy of P. monodon. The aim of this study was to determine the extent of seasonal variation (winter vs summer) in the lipid content and fatty acid composition of ovigerous females and their embryos. The results show that a higher percentage of saturated and polyunsaturated fatty acids are found in females in winter. Similarly, the composition of fatty acids in embryos found here indicates that winter embryos have more saturated fatty acids and essential fatty acids (C18:2n6cis, C18:3n6 and C22:6n3) than do summer embryos. According to PCA analysis of fatty acid profile, samples from summer may be distinguished into two isolated groups with conspicuous variations in fatty acids profile of embryo and hepatopancreas. While in winter, the opposite pattern occurs in the fatty acid profile of embryo and hepatopancreas. These variations may be related to relevant physiological processes (reproduction and growth) and of their ontogeny (development and survival of offspring). Seasonal variation in the lipid content and composition of fatty acids of P. monodon could directly impact this species’ reproduction and survival and subsequently could have consequences on the food web and fishery exploitation.

Research Article
Copyright © Marine Biological Association of the United Kingdom 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Alter, K., Paschke, K., Gebauer, P., Cumillaf, J.P. and Pörtner, H.O. (2015) Differential physiological responses to oxygen availability in early life stages of decapods developing in distinct environments. Marine Biology 162, 11111124.CrossRefGoogle Scholar
Andrade, H. (1986) Observaciones bioecológicas sobre invertebrados demersales de la zona central de Chile. In Arana, P. (ed) La pesca en Chile. Chile: Universidad Católica de Valparaíso, Editorial Universitaria, pp. 4156.Google Scholar
Andrés, M., Estévez, A., Simeó, C.G. and Rotllant, G. (2010) Annual variation in the biochemical composition of newly hatched larvae of Maja brachydactyla in captivity. Aquaculture 310, 99105.CrossRefGoogle Scholar
Anger, K. (2001) The biology of decapod crustacean larvae. Lisse: A.A. Balkema.Google Scholar
Anger, K. and Harms, J. (1990) Effects of salinity on the larval development of a semiterrestrial tropical crab, Sesarma angustipes (Decapoda: Grapsidae). Marine Ecology Progress Series 62, 8994.CrossRefGoogle Scholar
Arancibia, H. and Meléndez, R. (1987) Alimentación de peces concurrentes en la pesquería de Pleuroncodes monodon Milne Edwards. Investigaciones Pesqueras 34, 113128.Google Scholar
Arts, M.T., Brett, M.T. and Kainz, M.J. (2009) Lipids in aquatic ecosystems, 1st edition. New York, NY: Springer-Verlag.Google Scholar
Bahamonde, N. and Zavala, P. (1981) Contenidos gástricos de Genypterus maculatus (Tschudi) y Genypterus blacodes (Schneider) capturados en Chile entre 31° y 37°S (Teleostomi, Ophidiidae). Boletín del Museo Nacional de Historia Natural 38, 5359.Google Scholar
Bascur, M., Guzmán, F., Mora, S. and Urzúa, Á. (2017) Seasonal changes in the biochemical composition of females and offspring of red squat lobster, Pleuroncodes monodon (Decapoda, Munididae) from the Southeastern Pacific. Marine Ecology 38, e12419. doi: 10.1111/maec.12419.CrossRefGoogle Scholar
Bell, M.V. and Dick, J.R. (1990) The fatty acid composition of phospholipids from the eyes of the northern deepwater prawn Pandalus borealis. Biochemical Society Transactions 18, 907908.CrossRefGoogle ScholarPubMed
Beltz, B., Tlusty, M., Benton, J. and Sandeman, D. (2007) Omega-3 fatty acids upregulate adult neurogenesis. Neuroscience Letters 415, 154158.CrossRefGoogle ScholarPubMed
Burd, B.J. and Brinkhurst, R.O. (1984) The distribution of the galatheid crab Munida quadrispina (Benedict 1902) in relation to oxygen concentrations in British Columbia fjords. Journal of Experimental Marine Biology and Ecology 81, 120.CrossRefGoogle Scholar
Calado, R., Dionisio, G. and Dinis, M.T. (2007) Starvation resistance of early zoeal stages of marine ornamental shrimps Lysmata spp. (Decapoda: Hippolytidae) from different habitats. Journal of Experimental Marine Biology and Ecology 351, 226233.CrossRefGoogle Scholar
Calado, R., Guerao, G., Gras, N., Cleary, D. and Rotllant, G. (2013) Contrasting habitats occupied by sibling spider crabs Maja squinado and Maja brachydactyla (Brachyura, Majidae) can influence the biochemical variability displayed by newly hatched larvae. Journal of Plankton Research 35, 684688.CrossRefGoogle Scholar
Calado, R. and Leal, M.C. (2015) Trophic ecology of benthic marine invertebrates with bi-phasic life cycles: what are we still missing? Advances in Marine Biology 71, 170.CrossRefGoogle ScholarPubMed
Cequier-Sánchez, E., Rodríguez, C., Ravelo, A. and Zárate, R. (2008) Dichloromethane as a solvent for lipid extraction and assessment of lipid classes and fatty acids from samples of different natures. Journal of Agricultural and Food Chemistry 56, 42974303.CrossRefGoogle ScholarPubMed
Chang, E.S. and O'Connor, J.D. (1983) Metabolism and transport of carbohydrates and lipids. Internal anatomy and physiological regulation. New York, NY: Academic Press.Google Scholar
Chong, J., Sepúlveda, K. and Ibáñez, C. (2006) Variación temporal en la dieta del congrio colorado, Genypterus chilensis (Guichenot, 1881) frente al litoral de Talcahuano, Chile (36°32′S–36°45′S). Revista de Biología Marina y Oceanografía 41, 18.CrossRefGoogle Scholar
Connelly, T.L., Deibel, D. and Parrish, C.C. (2014) Trophic interactions in the benthic boundary layer of the Beaufort Sea shelf, Arctic Ocean: combining bulk stable isotope and fatty acid signatures. Progress in Oceanography 120, 7992.CrossRefGoogle Scholar
Dalsgaard, J., St John, M., Kattner, G., Muller-Navarra, D. and Hagen, W. (2003) Fatty acid trophic markers in the pelagic marine environment. Advances in Marine Biology 46, 225340.CrossRefGoogle ScholarPubMed
Daneri, G., Dellarossa, V., Quiñones, R., Jacob, B., Montero, P. and Ulloa, O. (2000) Primary production and community respiration in the Humboldt Current System off Chile and associated oceanic areas. Marine Ecology Progress Series 197, 4149.CrossRefGoogle Scholar
Escribano, R., Hidalgo, P., Fuentes, M. and Donoso, K. (2012) Zooplankton time series in the coastal upwelling and coastal transition zones off central-southern Chile (35–40°S). Progress in Oceanography 97, 174186.CrossRefGoogle Scholar
Escribano, R. and Morales, C.E. (2012) Spatial and temporal scales of variability in the coastal upwelling and coastal transition zones off central-southern Chile (35–40°S). Progress in Oceanography 92–95, 17.CrossRefGoogle Scholar
Escribano, R. and Schneider, W. (2007) The structure and functioning of the coastal upwelling system off central/southern Chile. Progress in Oceanography 75, 343347.CrossRefGoogle Scholar
Espinoza, E., Guzmán, F., Bascur, M. and Urzúa, A. (2016) Effect of starvation on the nutritional condition of early zoea larvae of the red squat lobster Pleuroncodes monodon (Decapoda, Munididae). Invertebrate Reproduction and Development 60, 137144.CrossRefGoogle Scholar
Fátima, H., Ayub, Z., Ali, S. and Siddiqui, G. (2013) Biochemical composition of the hemolymph, hepatopancreas, ovary, and muscle during ovarian maturation in the penaeid shrimps Fenneropenaeus merguiensis and F. penicillatus (Crustacea: Decapoda). Turkish Journal of Zoology 37, 334347.Google Scholar
Fernandez, M., Calderon, R., Cifuentes, M. and Pappalardo, P. (2006) Brooding behaviour and cost of brooding in small body size brachyuran crabs. Marine Ecology Progress Series 309, 213220.CrossRefGoogle Scholar
Figuereido, J. and Narciso, L. (2008) Egg volume, energy content and fatty acid profile of Maja brachydactyla (Crustacea: Brachyura: Majidae) during embryogenesis. Journal of the Marine Biological Association of the United Kingdom 88, 14011405.CrossRefGoogle Scholar
Fischer, S., Thatje, S., Graeve, M., Paschke, K. and Kattner, G. (2009) Bioenergetics of early life history stages of the brachyuran crab Cancer setosus in response to changes in temperature. Journal of Experimental Marine Biology and Ecology 374, 160166.CrossRefGoogle Scholar
Folch, J., Lees, M. and Stanley, S. (1957) A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry 276, 497509.Google Scholar
Gallardo, V., Cañete, J., Roa, R., Enríquez-Briones, S. and Baltazar, M. (1994) Recruitment of squat lobster Pleuroncodes monodon of the continental shelf off Central Chile. Journal of Crustacean Biology 14, 665669.CrossRefGoogle Scholar
García-Guerrero, M. (2010) Effect of temperature on consumption rate of main yolk components during the embryo development of the prawn Macrobrachium americanum (Crustacea: Decapoda: Palaemonidae). Journal of the World Aquaculture Society 41, 8492.CrossRefGoogle Scholar
Giménez, L. and Anger, K. (2001) Relationships among salinity, egg size, embryonic development, and larval biomass in the estuarine crab Chasmagnathus granulata Dana, 1851. Journal of Experimental Marine Biology and Ecology 260, 241257.CrossRefGoogle ScholarPubMed
Glencross, B.D. (2009) Exploring the nutritional demand for essential fatty acids by aquaculture species. Reviews in Aquaculture 1, 71124.CrossRefGoogle Scholar
Guzmán, F., Olavarría, L. and Urzúa, Á. (2016) Seasonal variation in reproductive parameters of the squat lobster Pleuroncodes monodon from a South Pacific population. Invertebrate Reproduction and Development 60, 137144.CrossRefGoogle Scholar
Hartnoll, R.G. (2006) Reproductive investment in Brachyura. Hydrobiologia 557, 3140.CrossRefGoogle Scholar
Henríquez, G. and Bahamonde, N. (1964) Análisis cualitativo y cuantitativo del contenido gástrico del congrio negro (Genypterus maculatus Tschudi) en pescas realizadas entre San Antonio y Constitución (1961–1962). Revista Universitaria 49, 139158.Google Scholar
Kattner, G., Graeve, M., Calcagno, J.A., Lovrich, G.A., Thatje, S. and Anger, K. (2003) Lipid, fatty acid and protein utilization during lecithotrophic larval development of Lithodes santolla (Molina) and Paralomis granulosa (Jacquinot). Journal of Experimental Marine Biology and Ecology 292, 6174.CrossRefGoogle Scholar
Kattner, G., Hagen, W., Lee, R.F., Campbell, R., Deibel, D., Falk-Petersen, S., Graeve, M., Hansen, B.W., Hirche, H.J., Jonasdottir, S.H., Madsen, M.L., Mayzaud, P., Muller-Navarra, D., Nichols, P.D., Paffenhofer, G.A., Pond, D., Saito, H., Stubing, D. and Virtue, P. (2007) Perspectives on marine zooplankton lipids. Canadian Journal of Fisheries and Aquatic Sciences 64, 16281639.CrossRefGoogle Scholar
Kattner, G., Wehrtmann, I.S. and Merck, T. (1994) Interannual variations of lipids and fatty acids during larval development of Crangon spp in the German bight, North Sea. Comparative Biochemistry and Physiology B 107, 103110.CrossRefGoogle Scholar
Kayama, M., Hirata, M., Kazanawa, A., Tokiwa, S. and Saito, M. (1980) Essential fatty acids in the diet of prawn-III. Lipid metabolism and fatty acid composition. Bulletin of the Japanese Society of Scientific Fisheries 46, 483488.CrossRefGoogle Scholar
Kiko, R., Hauss, H., Dengler, M., Sommer, S. and Melzner, F. (2015) The squat lobster Pleuroncodes monodon tolerates anoxic ‘dead zone' conditions off Peru. Marine Biology 162, 19131921.CrossRefGoogle Scholar
Kiyashko, S.I., Kharlamenko, V.I., Sanamyan, K., Alalykina, I.L. and Würzberg, L. (2014) Trophic structure of the abyssal benthic community in the Sea of Japan inferred from stable isotope and fatty acid analyses. Marine Ecology Progress Series 500, 121137.CrossRefGoogle Scholar
Le, S., Josse, J. and Husson, F. (2008) FactoMineR: an R package for multivariate analysis. Journal of Statistical Software 25, 118.CrossRefGoogle Scholar
Legezżynńska, J., Kędra, M. and Walkusz, W. (2014) Identifying trophic relationships within the high Arctic benthic community: how much can fatty acids tell? Marine Biology 161, 821836.CrossRefGoogle Scholar
Li, K., Chen, L.Q., Zhou, Z.L., Li, E., Zhao, X.Q. and Guo, H. (2006) The site of vitellogenin synthesis in Chinese mitten-handed crab Eriocheir sinensis. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 143, 453458.CrossRefGoogle ScholarPubMed
Liddy, G.C., Kolkovski, S., Nelson, M.M., Nichols, P.D., Phillips, B.F. and Maguire, G.B. (2005) The effect of PUFA enriched Artemia on growth, survival and lipid composition of western rock lobster, Panulirus cygnus, phyllosoma. Aquaculture Nutrition 11, 375384.CrossRefGoogle Scholar
Lovrich, G. and Thiel, M. (2011) Ecology, physiology, feeding and trophic role of squat lobster. In Poore, G., Ahyong, S. and Taylor, J. (eds) The biology of squat lobster. Collingwood, Australia: CSIRO Publishing, pp. 183222.Google Scholar
Malzahn, A.M., Aberle, N., Clemmesen, C. and Boersma, M. (2007) Nutrient limitation of primary producers affects planktivorous fish condition. Limnology and Oceanography 52, 20622071.CrossRefGoogle Scholar
McEdward, L.R. (2000) Adaptive evolution of larvae and life cycles. Seminars in Cell and Developmental Biology 11, 403409.CrossRefGoogle ScholarPubMed
Medellin-Mora, J., Escribano, R. and Schneider, W. (2016) Community response of zooplankton to oceanographic changes (2002–2012) in the central/southern upwelling system of Chile. Progress in Oceanography 142, 1729.CrossRefGoogle Scholar
Meusy, J.J. and Payen, G.G. (1988) Female reproduction in Malacostracan Crustacea: a review. Zoological Science 5, 217265.Google Scholar
Middleditch, B.S., Missler, S.R., Hines, H.B., McVey, J.P., Brown, A. and Lawrence, A.L. (1980) Metabolic profiles of penaeid shrimp: dietary lipids and ovarian maturation. Journal of Chromatography 195, 359368.CrossRefGoogle ScholarPubMed
Mika, A., Skorkowski, E. and Stepnowski, P. (2014) Effect of seasonal and experimental temperature on de novo synthesis of fatty acids in C. crangon. Bioscience, Biotechnology, and Biochemistry 78, 15291536.CrossRefGoogle ScholarPubMed
Nagaraju, G.P. (2011) Reproductive regulators in decapod crustaceans: an overview. Journal of Experimental Biology 214, 316.CrossRefGoogle ScholarPubMed
Palma, S. and Arana, P. (1997) Aspectos reproductivos del langostino Colorado (Pleuroncodes monodon H. Milne Edwards, 1837) frente a la costa de Concepción, Chile. Investigaciones Marinas 25, 203221.CrossRefGoogle Scholar
Pandian, T.J. (2016) Reproduction and development in crustacea. Series reproduction and development in aquatic invertebrates. Boca Raton, FL: CRC Press.Google Scholar
Pechenik, J.A. (1999) On the advantages and disadvantages of larval stages in benthic marine invertebrate life cycles. Marine Ecology Progress Series 177, 269297.CrossRefGoogle Scholar
Phleger, CF., Nelson, M.M., Groce, A.K., Cary, S.C., Coyne, K.J. and Nichols, P.D. (2005) Lipid composition of deep-sea hydrothermal vent tubeworm Riftia pachyptila, crabs Munidopsis subsquamosa and Bythograea thermydron, mussels Bathymodiolus sp. and limpets Lepetodrilus spp. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 141, 196210.CrossRefGoogle ScholarPubMed
Reigh, R.C. and Stickney, R.R. (1989) Effects of purified dietary fatty acids on the fatty acid composition of freshwater shrimp, Macrobrachium rosenbergii. Aquaculture 77, 157174.CrossRefGoogle Scholar
Roa, R., Gallardo, V., Ernst, B., Baltazar, M., Cañete, J. and Enríquez-Briones, S. (1995) Nursery ground, age structure and abundance of juvenile squat lobster Pleuroncodes monodon on the continental shelf off central Chile. Marine Ecology Progress Series 116, 4754.CrossRefGoogle Scholar
Romero, M., Lovrich, G., Tapella, F. and Thatje, S. (2004) Feeding ecology of the crab Munida subrugosa (Decapoda: Anomura: Galatheidae) in the Beagle Channel, Argentina. Journal of the Marine Biological Association of the United Kingdom 84, 359365.CrossRefGoogle Scholar
Rosa, R., Calado, R., Narciso, L. and Nunes, M.L. (2007) Embryogenesis of decapod crustaceans with different life history traits, feeding ecologies and habitats: a fatty acid approach. Marine Biology 151, 935947.CrossRefGoogle Scholar
Rotllant, G., Simeó, C.G., Guerao, G., Sastre, M., Cleary, D, Calado, R. and Estévez, A. (2014) Interannual variability in the biochemical composition of newly hatched larvae of the spider crab Maja brachydactyla (Decapoda, Majidae). Marine Ecology 35, 298307.CrossRefGoogle Scholar
Sánchez-Paz, A., García-Carreño, F., Muhlia-Almazán, A., Peregrino-Uriarte, A.B., Hernández-López, J. and Yepiz-Plascencia, G. (2006) Usage of energy reserves in crustaceans during starvation: status and future directions. Insect Biochemistry and Molecular Biology 36, 241249.CrossRefGoogle ScholarPubMed
Sokal, R.R. and Rohlf, F.J. (1995) Biometry. The principles and practice of statistics in biological research, 3rd edition. New York, NY: W.H. Freeman.Google Scholar
Taylor, H.H. and Leelapiyanart, N. (2001) Oxygen uptake by embryos and ovigerous females of two intertidal crabs, Heterozius rotundifrons (Belliidae) and Cyclograpsus lavauxi (Grapsidae): scaling and the metabolic costs of reproduction. Journal of Experimental Biology 204, 10831097.Google ScholarPubMed
Taylor, H.H. and Seneviratna, D. (2005) Ontogeny of salinity tolerance and hyper-osmoregulation by embryos of the intertidal crabs Hemigrapsus edwardsii and Hemigrapsus crenulatus (Decapoda, Grapsidae): survival of acute hyposaline exposure. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology 140, 495505.CrossRefGoogle ScholarPubMed
Thiel, M., Espinoza-Fuenzalida, N., Acuña, E. and Rivadeneira, M. (2012) Annual brood number and breeding periodicity of squat lobsters (Decapoda: Anomura: Galatheidae) from the continental shelf of the SE Pacific – implications for fisheries management. Fisheries Research 129–130, 2837.CrossRefGoogle Scholar
Thiel, M., Macaya, E.C., Acuña, E., Arntz, W.E., Bastías, H., Brokordt, K., Camus, P., Castilla, J.C., Castro, L.R., Cortés, M., Dumont, C.P., Escribano, R., Fernández, M., Gajardo, J.A., Gaymer, C.F., Gomez, I., González, A.E., González, H.E., Haye, P.A., Illanes, J.E., Iriarte, J.L., Lancellotti, D.L., Luna-Jorquera, G., Luxoro, C., Manriquez, P.H., Marín, V., Muñoz, P., Navarrete, S.A., Pérez, E., Poulin, E., Sellanes, J., Sepúlveda, H.H., Stotz, W., Tala, F., Thomas, A., Vargas, C.A., Vásquez, J.A. and Vega, J.M.A. (2007) The Humboldt Current System of northern and central Chile oceanographic processes, ecological interactions and socioeconomic feedback. Oceanography and Marine Biology: An Annual Review 45, 195344.CrossRefGoogle Scholar
Torres, P., Penha-Lopes, G., Narciso, L., Macia, A. and Paula, J. (2008) Fatty acids dynamics during embryonic development in genus Uca (Brachyura: Ocypodidae), from the mangroves of Inhaca Island, Mozambique. Estuarine, Coastal and Shelf Science 80, 307313.CrossRefGoogle Scholar
Urzúa, Á. and Anger, K. (2011) Larval biomass and chemical composition at hatching in two geographically isolated clades of the shrimp Macrobrachium amazonicum: intra or interspecific variation? Invertebrate Reproduction and Development 55, 236246.CrossRefGoogle Scholar
Urzúa, Á. and Anger, K. (2013) Seasonal variations in larval biomass and biochemical composition of brown shrimp, Crangon crangon (Decapoda, Caridea), at hatching. Helgoland Marine Research 67, 267277.CrossRefGoogle Scholar
Urzúa, Á., Paschke, K., Gebauer, P. and Anger, K. (2012) Seasonal and interannual variations in size, biomass and chemical composition of the eggs of North Sea shrimp, Crangon crangon (Decapoda: Caridea). Marine Biology 159, 583599.CrossRefGoogle Scholar
Villarroel, J.C. and Acuña, E. (2000) Consumption of deep-sea shrimp by bigeye flounder Hippoglossina macrops in fishing grounds off northern Chile. Journal of Fish Biology 57, 12801289.CrossRefGoogle Scholar
Vogt, G. (1994) Life-cycle and functional cytology of the hepatopancreatic cells of Astacus astacus (Crustacea, Decapoda). Zoomorphology 114, 83101.CrossRefGoogle Scholar
Volkman, J.K., Barrett, S.M., Blackburn, S.I., Mansour, M.P., Sikes, E.L. and Gelin, F. (1998) Microalgal biomarkers: a review of recent research developments. Organic Geochemistry 29, 11631179.CrossRefGoogle Scholar
Wenner, A. and Kuris, A. (1990) Crustacean egg production. Rotterdam: A.A. Balkema.Google Scholar
Yamaguchi, T. (2004) Seasonal changes in the energy content of females of the fiddler crab, Uca lactea, especially during the reproductive period. Crustaceana 76, 13711397.CrossRefGoogle Scholar
Yannicelli, B., Castro, L., Parada, C., Schneider, W., Colas, F. and Donoso, D. (2012) Distribution of Pleuroncodes monodon larvae over the continental shelf of south-central Chile: field and modeling evidence for partial local retention and transport. Progress in Oceanography 92–95, 206227.CrossRefGoogle Scholar
Ying, X.P., Yang, W.X. and Zhang, Y.P. (2006) Comparative studies on fatty acid composition of the ovaries and hepatopancreas at different physiological stages of the Chinese mitten crab. Aquaculture 256, 617623.CrossRefGoogle Scholar
Zuur, A.F., Ieno, E.N. and Graham, S.M. (2007) Analysing ecological data (statistics for biology and health). New York, NY: Springer.CrossRefGoogle Scholar
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Temporal variation in the fatty acid composition of ovigerous females and embryos of the squat lobster Pleuroncodes monodon (Decapoda, Munididae)
Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Temporal variation in the fatty acid composition of ovigerous females and embryos of the squat lobster Pleuroncodes monodon (Decapoda, Munididae)
Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Temporal variation in the fatty acid composition of ovigerous females and embryos of the squat lobster Pleuroncodes monodon (Decapoda, Munididae)
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *