Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T19:26:34.904Z Has data issue: false hasContentIssue false

The anthomedusan fauna of the Japan Trench: preliminary results from in situ surveys with manned and unmanned vehicles

Published online by Cambridge University Press:  09 September 2008

Dhugal Lindsay*
Affiliation:
Japan Agency for Marine–Earth Science and Technology (JAMSTEC), Yokosuka, Japan
Francesc Pagès
Affiliation:
Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta 37–49, 08003 Barcelona, Catalonia, Spain deceased
Jordi Corbera
Affiliation:
Carrer Gran, 90, 08310 Argentona, Catalunya, Spain
Hiroshi Miyake
Affiliation:
Japan Agency for Marine–Earth Science and Technology (JAMSTEC), Yokosuka, Japan School of Fisheries Science, Kitasato University, Ofunato, Iwate 022-0101, Japan
James C. Hunt
Affiliation:
Department of Biology, East Stroudsburg University, East Stroudsburg, PA 18301, USA
Tadafumi Ichikawa
Affiliation:
National Research Institute of Fisheries Research, Fisheries Research Agency, 2-12-4, Fuku-ura, Kanazawa-ku, Yokohama 236-8648, Japan
Kyohei Segawa
Affiliation:
National Research Institute of Fisheries Research, Fisheries Research Agency, 2-12-4, Fuku-ura, Kanazawa-ku, Yokohama 236-8648, Japan National Research Institute of Far Seas Fisheries, Fisheries Research Agency, 2-12-4, Fuku-ura, Kanazawa-ku, Yokohama 236-8648, Japan
Hiroshi Yoshida
Affiliation:
Japan Agency for Marine–Earth Science and Technology (JAMSTEC), Yokosuka, Japan
*
Correspondence should be addressed to: Dhugal Lindsay, Japan Agency for Marine–Earth Science and Technology (JAMSTEC), Yokosuka, Japan email: dhugal@jamstec.go.jp

Abstract

Modern in situ survey technologies such as crewed submersibles, remotely-operated vehicles (ROVs), towed camera arrays, and visual/video plankton recorders (VPRs) were used to characterize the dominant anthomedusan species off the eastern seaboard of Japan. Notes on the taxonomy, distribution, behaviour and interspecies interactions are presented for the four observed species: Euphysa japonica, E. flammea, Calycopsis nematophora and Pandea rubra. A new generic definition for the genus Calycopsis is proposed. The possibility of run-on, cascading detrimental effects of oceanic acidification on midwater ecosystems was identified from observations made during the present study.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arai, M.N. and Brinckmann-Voss, A. (1980) Hydromedusae of British Columbia and Puget Sound. Canadian Bulletin of Fisheries and Aquatic Sciences 204, 1192.Google Scholar
Arai, M.N. and Mason, J.C. (1982) Spring and summer abundance and vertical distribution of Hydromedusae of the central Strait of Georgia, British Columbia. Syesis 15, 715.Google Scholar
Bigelow, H.B. (1909) Reports on the scientific results of the Expedition to the Eastern Tropical Pacific of ‘Albatross’, from October, 1904 to March 1905. Memoirs of the Museum of Comparative Zoology, Harvard College 37, 1245.Google Scholar
Bigelow, H.B. (1913) Medusae and Siphonophorae collected by the U.S. Fisheries Steamer ‘Albatross’ in the northwestern Pacific, 1906. Proceedings of the United States National Museum 44, 1119.CrossRefGoogle Scholar
Bigelow, H.B. (1920) Medusae and ctenophores from the Canadian Arctic Expedition, 1913–18. Report of the Canadian Arctic Expedition 1913–18. Volume. VIII: Mollusks, echinoderms, coelenterates, etc. Part H, 319, pl. 1–2.Google Scholar
Bleeker, J. and Van der Spoel, S. (1988) Medusae of the Amsterdam Mid North Atlantic Plankton Expeditions (1980–1983) with description of two new species. Bijdragen tot de Dierkunde 58, 227258.CrossRefGoogle Scholar
Bouillon, J. (1987) Considérations sur le développement des Narcoméduses et sur leur position phylogénétique. Indo-Malayan Zoology 4, 189278.Google Scholar
Bouillon, J. and Boero, F. (2000) The Hydrozoa: a new classification in the light of old knowledge. Thalassia Salentina 24, 145.Google Scholar
Bouillon, J., Medel, M.D., Pagès, F., Gili, J.M., Boero, F. and Gravili, C. (2004) Fauna of the Mediterranean Hydrozoa. Scientia Marina 68, 5438.CrossRefGoogle Scholar
Bouillon, J., Gravili, C., Pagès, F., Gili, J-M. and Boero, F. (2006) An introduction to Hydrozoa. Mémoires du Muséum National d'Histoire Naturelle, Tome 194. Paris: Publications Scientifiques du Muséum, pp. 591.Google Scholar
Brinckmann-Voss, A. and Arai, M.N. (1998) Further notes on Leptolida (Hydrozoa: Cnidaria) from Canadian Pacific waters. Zoologische Verhandelingen 323, 3768.Google Scholar
Davis, C.S., Hu, Q., Gallager, S.M., Tang, X. and Ashjian, C.J. (2004) Real-time observation of taxa-specific plankton distributions: an optical sampling method. Marine Ecology Progress Series 284, 7796.Google Scholar
Davis, C.S., Thwaites, F.T., Gallager, S.M. and Hu, Q. (2005) A three-axis fast-tow digital video plankton recorder for rapid surveys of plankton taxa and hydrography. Limnology and Oceanography: Methods 3, 5974.Google Scholar
Drazen, J.C. and Robison, B.H. (2004) Direct observations of the association between a deep-sea fish and a giant scyphomedusa. Marine and Freshwater Behaviour and Physiology 37, 209214.Google Scholar
Foerster, R.E. (1923) The hydromedusae of the west coast of North America, with special reference to those of the Vancouver Island region. Contributions to Canadian Biology (New Series) 1, 219277, pl. 1–5.Google Scholar
Haddock, S.H.D., Dunn, C.W. and Pugh, P.R. (2005) A re-examination of siphonophore terminology and morphology, applied to the description of two new prayine species with remarkable bio-optical properties. Journal of the Marine Biological Association of the United Kingdom 85, 695708.Google Scholar
Hamner, W.M. (1990) Design developments in the plankton kreisel, a plankton aquarium for ships at sea. Journal of Plankton Research 12, 397402.CrossRefGoogle Scholar
Harbison, G.R., Matsumoto, G.I. and Robison, B.H. (2001) Lampocteis cruentiventer gen. nov., sp. nov.: a new mesopelagic lobate ctenophore, representing the type of a new family (Class Tentaculata, Order Lobata, Family Lampoctenidae, fam. nov.). Bulletin of Marine Science 68, 299311.Google Scholar
Hopcroft, R.R. and Robison, B.H. (2005) New mesopelagic larvaceans in the genus Fritillaria from Monterey Bay, California. Journal of the Marine Biological Association of the United Kingdom 85, 655678.Google Scholar
Hunt, J.C. and Lindsay, D.J. (1999) Methodology for creating an observational database of midwater fauna using submersibles: results from Sagami Bay, Japan. Plankton Biology and Ecology 46, 7587.Google Scholar
Hunt, J.C., Hashimoto, J., Fujiwara, Y., Lindsay, D.J., Fujikura, K., Tsuchida, S. and Yamamoto, T. (1997) The development, implementation, and establishment of a mesopelagic and benthopelagic biological survey program using submersibles in the seas around Japan. JAMSTEC Journal of Deep Sea Research 13, 675685.Google Scholar
Ichikawa, T., Segawa, K. and Terazaki, M. (2005) Image processing features in the ROIs extraction procedure in VPRII. Bulletin of the Plankton Society of Japan, 52, 6571.Google Scholar
Kitamura, M., Lindsay, D.J. and Miyake, H. (2005) Description of a new midwater medusa, Tiaropsidium shinkai n. sp. (Leptomedusae, Tiaropsidae). Plankton Biology and Ecology 52, 100106.Google Scholar
Kramp, P.L. (1926) Medusae. part 2 Anthomedusae. The Danish Ingolf Expedition 10, 1102, pl. 1–2.Google Scholar
Kramp, P.L. (1928) Papers from Dr. Th. Mortensen's Pacific Expedition 1914–16. XLIII. Hydromedusae. I. Anthomedusae. Videnskabelige Meddelelser fra Dansk Naturhistorisk Forening 85, 2764.Google Scholar
Kramp, P.L. (1961) Synopsis of the medusae of the world. Journal of the Marine Biological Association of the United Kingdom 40, 1469.CrossRefGoogle Scholar
Kramp, P.L. (1968) The hydromedusae of the Pacific and Indian Oceans. Sect. II and III. Dana-reports Carlsberg Foundation 72, 1200.Google Scholar
Kramp, P.L. and Damas, D. (1925) Les Méduses de la Norvège. Videnskabelige Meddelelser fra Dansk Naturhistorisk Forening 80, 217324, pl. 35.Google Scholar
Lalli, C.M. and Gilmer, R.W. (1989) Pelagic snails: the biology of holoplanktonic gastropod mollusks. Stanford: Stanford University Press, xiv + 259 pp.Google Scholar
Lindsay, D.J. (2003) Bioluminescence in the mesopelagic realm. Kaiyo Monthly, Special Edition 35, 606612.Google Scholar
Lindsay, D.J. (2005) Planktonic communities below 2000 m depth. Bulletin of the Plankton Society of Japan 52, 113118.Google Scholar
Lindsay, D.J. and Hunt, J.C. (2005) Biodiversity in midwater cnidarians and ctenophores: submersible-based results from deep-water bays in the Japan Sea and north-western Pacific. Journal of the Marine Biological Association of the United Kingdom 85, 503517.Google Scholar
Lindsay, D.J., Hunt, J.C. and Hayashi, K. (2001) Associations in the midwater zone: the penaeid shrimp Funchalia sagamiensis Fujino 1975 and pelagic tunicates (Order: Pyrosomatida). Marine and Freshwater Behaviour and Physiology 34, 157170.Google Scholar
Lindsay, D.J., Furushima, Y., Miyake, H., Kitamura, M. and Hunt, J.C. (2004) The scyphomedusan fauna of the Japan Trench: preliminary results from a remotely-operated vehicle. Hydrobiologia 530/531, 537547.Google Scholar
Linko, A. (1904) Zoologische Studien im Barrnts Meere. Auf Grund der Untersuchungen der wissenschaftlichen Murman-Expedition. Zoologischer Anzeige 68, 210220.Google Scholar
Maas, O. (1909) Beiträge zur Naturgeschichte Ostasiens. Japanische Medusen. Herausgegeben von Dr F. Doflein. Abhandlungen der Mathematisch-Physikalischen Klasse der Königlich Bayerischen. Akademie der Wissenschaften 1, 152, pl. 1–3.Google Scholar
Mackie, G.O. (1985) Midwater macroplankton of British Columbia studied by submersible PISCES IV. Journal of Plankton Research 7, 753777.CrossRefGoogle Scholar
Mackie, G.O. and Mills, C.E. (1983) Use of the Pisces IV submersible for zooplankton studies in coastal waters of British Columbia. Canadian Journal of Fisheries and Aquatic Sciences 40, 763776.CrossRefGoogle Scholar
Matsumoto, G., Raskoff, K. and Lindsay, D.J. (2003) Tiburonia granrojo, a new mesopelagic scyphomedusa from the Pacific Ocean representing the type of a new subfamily (Class Scyphozoa, Order Semaeostomae, Family Ulmaridae, Subfamily Tiburoniiae subfam nov.) Marine Biology 143, 7377.Google Scholar
Mayer, A.G. (1910) Medusae of the World. Volumes I–II The Hydromedusae. Washington, DC: Carnegie Institution of Washington, pp. 1498.Google Scholar
Mills, C.E., Pugh, P.R., Harbison, G.R. and Haddock, S.H.D. (1996) Medusae, siphonophores and ctenophores of the Alborán Sea, south western Mediterranean. Scientia Marina 60, 145163.Google Scholar
Miyake, H., Lindsay, D.J. and Kubota, S. (2004) Midwater and bentho-pelagic animals on the south slope of Shiribeshi Seamount off the west coast of Hokkaido. JAMSTEC Journal of Deep Sea Research 24, 3742.Google Scholar
Naumov, D.V. (1960) Hydroids and Hydromedusae of the USSR. Translated from Russian (1969). Jerusalem: Israel Program for Scientific Translations.Google Scholar
Nouvian, C. (2007) The deep: the extraordinary creatures of the abyss. Chicago: University of Chicago Press, 256 pp.Google Scholar
Orr, J.C., Fabry, V.J., Aumont, O., Bopp, L., Doney, S.C., Feely, R.A., Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R.M., Lindsay, K., Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R.G., Plattner, G.-K., Rodgers, K.B., Sabine, C.L., Sarmiento, J.L., Schlitzer, R., Slater, R.D., Totterdell, I.J., Weirig, M.-F., Yamanaka, Y. and Yool, A. (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681686.Google Scholar
Pagès, F., Corbera, J. and Lindsay, D.J. (2007) Piggybacking pycnogonids and parasitic narcomedusae on Pandea rubra (Anthomedusae, Pandeidae). Plankton and Benthos Research 2, 8390.Google Scholar
Pérès, J.M. (1959) Deux plongées au large du Japon avec le bathyscaphe français F.N.R.S.III. Bulletin de l'Institut de Océanographique 1134, 128.Google Scholar
Picard, J. (1956) Le premier stade de l'hydroméduse Pandea conica, issu de l'Hydropolype Campaniclava cleodorae. Bulletin de l'Institut Océanographique Monaco 1086, 111.Google Scholar
Pugh, P.R. (2006) Reclassification of the clausophyid siphonophore Clausophyes ovata into the genus Kephyes gen. nov. Journal of the Marine Biological Association of the United Kingdom 86, 9971004.Google Scholar
Raskoff, K.A. and Robison, B.H. (2005) A novel mutualistic relationship between a doliolid and a cnidarian, Bythotiara dolioeques sp. nov. Journal of the Marine Biological Association of the United Kingdom 85, 583593.Google Scholar
Raskoff, K.A., Purcell, J.E. and Hopcroft, R.R. (2005) Gelatinous zooplankton of the Arctic Ocean: in situ observations under the ice. Polar Biology 28, 207217.Google Scholar
Rees, W.J. (1967) A brief survey of the symbiotic associations of Cnidaria with Mollusca. Proceedings of the Malacological Society of London 37, 213231.Google Scholar
Renshaw, R.W. (1965) Distribution and morphology of the medusa, Calycopsis nematophora, from the North Pacific Ocean. Journal of the Fisheries Research Board of Canada 22, 841847.CrossRefGoogle Scholar
Robison, B.H., Raskoff, K.A. and Sherlock, R.E. (2005) Ecological substrate in midwater: Doliolula equus, a new mesopelagic tunicate. Journal of the Marine Biological Association of the United Kingdom 85, 655663.CrossRefGoogle Scholar
Royal Society. (2005) Ocean acidification due to increasing atmospheric carbon dioxide. Policy document 12/05 Royal Society: London Cardiff: The Clyvedon Press Ltd, 68 pp.Google Scholar
Russell, F.S. (1953) The medusae of the British Isles. Volume I—Anthomedusae, Leptomedusae, Limnomedusae, Trachymedusae, and Narcomedusae. Cambridge: Cambridge University Press, pp. 1530, pl. 1–35.Google Scholar
Schuchert, P. (2007a) The Hydrozoa directory, Version 15, September 2007. (www.ville-ge.ch/musinfo/mhng/hydrozoa/hydrozoa-directory.htm).Google Scholar
Schuchert, P. (2007b) The European athecate hydroids and their medusae (Hydrozoa, Cnidaria): Filifera part 2. Revue Suisse de Zoologie 114, 195396.CrossRefGoogle Scholar
Toyokawa, M., Toda, T., Kikuchi, T., Miyake, H. and Hashimoto, J. (2003) Direct observations of a dense occurrence of Bolinopsis infundibulum (Ctenophora) near the seafloor under the Oyashio and notes on their feeding behavior. Deep-Sea Research I 50, 809813.CrossRefGoogle Scholar
Uchida, T. (1927) Studies on Japanese Hydromedusae. 1. Anthomedusae. Journal of the Faculty of Science Imperial University Tokyo IV, 145241.Google Scholar
Uchida, T. (1933) Medusae from the vicinity of Kamchatka. Journal of the Faculty of Science Hokkaido Imperial University 46, 125133.Google Scholar
Van der Spoel, S. and Bleeker, J. (1988) Medusae from the Banda Sea and Aru Sea plankton, collected during the Snellius II Expeditions, 1984–1985. Indo-Malayan Zoology 5, 161262.Google Scholar
Vinogradov, M.E. and Shushkina, E.A. (2002) Vertical distribution of gelatinous macroplankton in the North Pacific observed by manned submersibles Mir-1 and Mir-2. Journal of Oceanography 58, 295303.Google Scholar
Wrobel, D. and Mills, C.E. (1998) Pacific coast pelagic invertebrates: a guide to the common gelatinous animals. Monterey: Sea Challengers, 112 pp.Google Scholar
Yoshida, H. and Lindsay, D.J. (2007) Development of the PICASSO (Plankton Investigatory Collaborating Autonomous Survey System Operon) System at the Japan Agency for Marine–Earth Science and Technology. Japan Deep Sea Technology Society Report 54, 510. [Abstract in English.]Google Scholar
Zhang, J. and Lin, M. (2001) The Hydromedusae and its distribution in Chukchi Sea and adjacent southern edge waters of Canada Basin, Arctic Ocean. Chinese Journal of Polar Science 12, 133144.Google Scholar