Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-16T18:51:44.543Z Has data issue: false hasContentIssue false

Calcium accumulation and secretion in the serpulid polychaete Spirorbis spirorbis L. at settlement

Published online by Cambridge University Press:  11 May 2009

J. A. Nott
Affiliation:
N.E.R.C. Unit of Marine Invertebrate Biology, Marine Science Laboratories, Menai Bridge, Anglesey, North Wales, U.K.
K. R. Parkes
Affiliation:
N.E.R.C. Unit of Marine Invertebrate Biology, Marine Science Laboratories, Menai Bridge, Anglesey, North Wales, U.K.

Extract

When the free-swimming larva of the polychaete tubeworm Spirorbis spirorbis settles permanently on a suitable substratum, it forms a thin, mucous, anchoring tube, which covers only the posterior half of the body. Within 3 h the worm has built a comparatively thick, calcareous tube onto the anterior end of the initial, mucous tube, which later becomes a compressed and folded remnant (Nott, 1973). The volume of calcareous material forming the tube cannot be stored within the body of the larva before settlement and must, therefore, be taken up rapidly from sea water or ingested material.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Azarnia, R., Larsen, W. J. & Loewenstein, W. R., 1974. The membrane junctions in communicating and noncommunicating cells, their hybrids and segregants. Proceedings of the National Academy of Science, U.S.A., 71, 880–84.CrossRefGoogle ScholarPubMed
Bailey, J. H., 1969. Methods of brood protection as a basis for reclassification of the Spirorbinae (Serpulidae). Journal of the Linnean Society (Zoology), 48, 387407.CrossRefGoogle Scholar
Becker, G. L., Chen, Chung-Ho, Greenawalt, J. W. & Lehninger, A. L., 1974. Calcium phosphate granules in the hepatopancreas of the blue crab Callinectes sapidus. Journal of Cell Biology, 61, 316–26.CrossRefGoogle ScholarPubMed
Benedetti, E. L. & Emmelot, P., 1968. Hexagonal array of subunits in tight junctions separated from isolated rat liver plasma membranes. Journal of Cell Biology, 38, 1524.CrossRefGoogle ScholarPubMed
Bonucci, E., Derenzini, M. & Marinozzi, V., 1973. The organic-inorganic relationship in calcified mitochondria. Journal of Cell Biology, 59, 185211.CrossRefGoogle ScholarPubMed
Brightman, M. W. & Reese, T. S., 1969. Junctions between intimately apposed cell membranes in the vertebrate brain. Journal of Cell Biology, 40, 648–77.CrossRefGoogle ScholarPubMed
Copeland, D. E., 1967. A study of salt secreting cells in the brine shrimp (Anemia salina). Protoplasma, 63, 363–84.CrossRefGoogle Scholar
Copeland, D. E. & Fitzjarrell, A. T., 1968. The salt absorbing cells in the gills of the blue crab (Callinectes sapidus Rathbun) with notes on modified mitochondria. Zeitschrift fiir Zellforschung und mikroskopische Anatomie, 92, 122.CrossRefGoogle ScholarPubMed
Copeland, E., 1964. A mitochondrial pump in the cells of the anal papillae of mosquito larvae. Journal of Cell Biology, 23, 253–63.CrossRefGoogle ScholarPubMed
Diamond, J. M. & Tormey, J. McD., 1966. Role of long extracellular channels in fluid transport across epithelia. Nature, London, 210, 817–20.CrossRefGoogle ScholarPubMed
Doyle, W. L., 1960. The principal cells of the salt-gland of marine birds. Experimental Cell Research, 21, 386–93.CrossRefGoogle ScholarPubMed
Goodenough, D. A. & Revel, J. P., 1970. A fine structural analysis of intercellular junctions in the mouse liver. Journal of Cell Biology, 45, 272–90.CrossRefGoogle ScholarPubMed
Hand, A. R. & Gobel, S., 1972. The structural organization of the septate and gap junctions of Hydra. Journal of Cell Biology, 52, 397408.CrossRefGoogle ScholarPubMed
Hedley, R. H., 1956 a. Studies of serpulid tube formation. I. The secretion of the calcareous and organic components of the tube by Pomatoceros triqueter. Quarterly Journal of Microscopical Science, 97, 411–19.Google Scholar
Hedley, R. H., 1956 b. Studies of serpulid tube formation. II. The calcium-secreting glands in the peristomium of Spirorbis, Hydroides and Serpula. Quarterly Journal of Microscopical Science, 97, 421–27.Google Scholar
Hedley, R. H., 1958. Tube formation by Pomatoceros triqueter (Polychaeta). Journal of the Marine Biological Association of the United Kingdom, 37, 315–22.CrossRefGoogle Scholar
Hudspeth, A. J. & Revel, J. P., 1971. Coexistence of gap and septate junctions in an invertebrate epithelium. Journal of Cell Biology, 50, 92101.CrossRefGoogle Scholar
Humbert, W., 1974. Localisation, structure et genese des concretions minerales dans le mésentéron des Collemboles Tomoceridae (Insecta, Collembola). Zeitschrift für Morphologie und Ökologie der Tiere, 78, 93109.CrossRefGoogle Scholar
Kikuchi, S., 1971. The fine structure of the alimentary canal of the brine shrimp, Anemia salina: the midgut. Annual Report of Iwate Medical University, School of Liberal Arts & Sciences, No. 6, 1747.Google Scholar
Kikuchi, S., 1972. Three-dimensional networks of a tubular system in the salt-transporting cells of the gill and the neck organ of Anemia salina (brine shrimp). Annual Report of Iwate Medical University, School of Liberal Arts & Sciences, No. 7, 1526.Google Scholar
Knight-Jones, E. W., 1951. Gregariousness and some other aspects of the setting behaviour of Spirorbis. Journal of the Marine Biological Association of the United Kingdom, 30, 201–22.CrossRefGoogle Scholar
Meredith, J. & Phillips, J. E., 1973. Rectal ultrastructure in salt- and freshwater mosquito larvae in relation to physiological state. Zeitschrift fur Zellforschung und mikroskopische Anatomie, 138, 122.CrossRefGoogle ScholarPubMed
Milne, D. J. & Ellis, R. A., 1973. The effect of salinity acclimation on the ultrastructure of the gills of Gammarus oceanicus (Segerstrale, 1947) (Crustacea: Amphipoda). Zeitschrift fur Zellforschung und mikroskopische Anatomie, 139, 311–18.CrossRefGoogle ScholarPubMed
Neff, J. M., 1969. Mineral regeneration by serpulid polychaete worms. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 136, 7690.CrossRefGoogle Scholar
Neff, J. M., 1971. Ultrastructural studies of the secretion of calcium carbonate by the serpulid polychaete worm, Pomatoceros caeruleus. Zeitschrift für Zellforschung und mikroskopische Anatomie, 120, 160–86.CrossRefGoogle ScholarPubMed
Nott, J. A., 1973. Settlement of the larvae of Spirorbis spirorbis L. Journal of the Marine Biological Association of the United Kingdom, 53, 437–53.CrossRefGoogle Scholar
Pate, J. L. & Ordal, E. J., 1967. The fine structure of Chondrococcus columnaris. III. The surface layers of Chondrococcus columnaris. Journal of Cell Biology, 35, 3751.CrossRefGoogle Scholar
Quievreux, C., 1963. Secretion tubipare des larves de Spirorbinae (Annelides Polychètes). Cahiers de biologie marine, 4, 399406.Google Scholar
Revel, J. P. & Karnovsky, M. J., 1967. Hexagonal array of subunits in intercellular junctions of mouse heart and liver. Journal of Cell Biology, 33, C7–C12.CrossRefGoogle ScholarPubMed
Robertson, J. D. & Pantin, C. F. A., 1938. Tube formation in Pomatoceros triqueter (L.). Nature, London, 141, 648–9.CrossRefGoogle Scholar
Swan, E. F., 1950. The calcareous tube secreting glands of the serpulid polychaetes. Journal of Morphology, 86, 285314.CrossRefGoogle Scholar
Vovelle, J., 1956. Processus glandulaires impliques dans la reconstitution du tube chez Pomatoceros triqueter (L.) Annélide Polychète (Serpulidae). Bulletin du Laboratoire maritime de Dinard, 42, 1032.Google Scholar
Walker, G., Rainbow, P. S., Foster, P. & Crisp, D. J., 1975. Barnacles: possible indicators of zinc pollution ? Marine Biology 30, 5765.CrossRefGoogle Scholar