Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T07:55:38.789Z Has data issue: false hasContentIssue false

The effect of temperature and salinity on the larval development of Stenorhynchus seticornis (Brachyura: Inachidae) reared in the laboratory

Published online by Cambridge University Press:  05 July 2010

Jesús E. Hernández
Affiliation:
Universidad de Oriente, Escuela de Ciencias Aplicadas del Mar, Boca del Río, Isla de Margarita, Venezuela
José Luis Palazón-Fernández*
Affiliation:
Universidad de Oriente, Instituto de Investigaciones Científicas, Boca del Río, Isla de Margarita, Venezuela
Gonzalo Hernández
Affiliation:
Universidad de Oriente, Escuela de Ciencias Aplicadas del Mar, Boca del Río, Isla de Margarita, Venezuela
Juan Bolaños
Affiliation:
Universidad de Oriente, Escuela de Ciencias Aplicadas del Mar, Boca del Río, Isla de Margarita, Venezuela
*
Correspondence should be addressed to: J.L. Palazón-Fernández, Universidad de Oriente, Instituto de Investigaciones Científicas, Boca del Río, Isla de Margarita, Venezuela emails: juis.palazon@icman.csic.es; jose.palazon@ne.udo.edu.ve

Abstract

Larvae of Stenorhynchus seticornis were reared in the laboratory in a factorial experiment employing three temperatures (22, 25 and 28°C) and three salinities (30, 35 and 40‰) to determine the effects of these variables on the survival and duration of the larval stages. Larvae from five females were subdivided in six groups of 10 and reared in glass bowls containing 125 ml filtered and UV-irradiated seawater at different temperature–salinity combinations. Larvae were transferred daily to clean bowls with newly hatched Artemia nauplii, and the number of moults and mortality within each bowl was recorded. Complete larval development of S. seticornis occurred under all experimental conditions, except at temperature 28°C and salinity 35‰. Salinity affected percentage survival of the two zoeal stages, but not that of the megalopa. Survival of the second zoeal stage, the megalopa, and the complete development to the first crab was affected by temperature, with the greatest survival occurring at 25°C. Duration of the two zoeal stages, the megalopa, and development to the first crab stage showed a gradual reduction with increasing temperature. Development from hatching to the first crab stage required 17 to 31 days and was inversely related to temperature, averaging 26.9 days at 22°C, 21.0 days at 25°C and 19.7 days at 28°C. Salinity affected the duration of the first zoeal stage only.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anger, K. (1983) Temperature and the larval development of Hyas araneus L. (Decapoda: Majidae); extrapolation of laboratory data to field conditions. Journal of Experimental Marine Biology and Ecology 69, 203215.Google Scholar
Barros, H.P. and Valenti, W.C. (2003) Ingestion rates of Artemia nauplii for different larval stages of Macrobrachium rosenbergii. Aquaculture 217, 223233.Google Scholar
Bolaños, J.A. (1992) Desarrollo larval de Stenocionops furcata coelata (Milne-Edwards, 1978) (Crustacea: Decapoda, Majidae), realizado en condiciones experimentales. MSc thesis. Universidad de Oriente, Cumaná, Venezuela.Google Scholar
Boschi, E. (1981) Larvas de Crustacea Decapoda. In Boltovskoy, D. (ed.) Atlas del zooplancton del Atlántico Sudoccidental. Argentina: Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), pp. 699758.Google Scholar
Boschi, E. and Scelzo, M.A. (1969) El desarrollo larval de los crustáceos decápodos. Ciencia e Investigación 25, 146154.Google Scholar
Calado, R., Narciso, L., Morais, S., Rhyne, A.L. and Lin, J. (2003) A rearing system for the culture of ornamental decapod crustacean larvae. Aquaculture 218, 329339.Google Scholar
Chang, E.S. (1985) Hormonal control of molting in decapod crustacea. American Zoologist 25, 179185.Google Scholar
Charmantier, G. (1998) Ontogeny of osmoregulation in crustaceans: a review. Invertebrate Reproduction and Development 33, 177190.Google Scholar
Cobo, V.J. (2002) Breeding period of the arrow crab Stenorhynchus seticornis from Couves Island, south-eastern Brazilian coast. Journal of the Marine Biological Association of the United Kingdom 82, 10311032.Google Scholar
Corbin, J.S. (2001) Marine omamentals'99, conference highlights and priority recommendations. Aquarium Sciences and Conservation 3, 311.Google Scholar
Costlow, J.D. (1967) The effect of salinity and temperature on survival and metamorphosis of megalops of the blue crab, Callinectes sapidus. Helgoländer Wissenschaftliche Meeresuntersuchungen 15, 8497.Google Scholar
Costlow, J. and Bookhout, C. (1968) The effect of environmental factors on development of the land-crab Cardisoma guanhumi Latreille. American Zoologist 8, 339410.Google Scholar
Costlow, J., Bookhout, C. and Monroe, R. (1960) The effect of salinity and temperature on larval development of Sesarma cinereum (Bosc) reared in the laboratory. Biological Bulletin. Marine Biological Laboratory, Woods Hole 118, 183202.Google Scholar
Crisp, D.J. (1976) Settlement responses in marine organisms. In Newel, R.C. (ed.) Adaptation to environment: essays on the physiology of marine animals. London: Butterworths, pp. 83124.Google Scholar
Díaz, H. and Bevilacqua, M. (1986) Larval development of Aratus pisonii (Milne-Edwards) (Brachyura, Grapsidae) from marine and estuarine environments reared under different salinity conditions. Journal of Coastal Research 2, 4350.Google Scholar
Ehlinger, G.S. and Tankersley, R.A. (2004) Survival and development of horseshoe crab (Limulus polyphemus) embryos and larvae in hypersaline conditions. Biological Bulletin. Marine Biological Laboratory, Woods Hole 206, 8794.Google Scholar
Felder, D.L., Martin, J.W. and Goy, J.W. (1985) Patterns in early postlarval development of decapods. In Wenner, A.M. (ed.) Crustacean Issues 2. Larval growth. Rotterdam and Boston: A.A. Balkema, pp. 163225.Google Scholar
Gonçalves, F., Ribeiro, R. and Soares, A. (1995) Laboratory study of effects of temperature and salinity on survival and larval development of a population of Rhithropanopeus harrisii from the Mondego River estuary, Portugal. Marine Biology 121, 639645.Google Scholar
Goy, J., Bookhout, C. and Costlow, J. (1981) Larval development of the spider crab Mithrax pleuracanthus Stimpson reared in the laboratory (Decapoda: Brachyura: Majidae). Journal of Crustacean Biology 1, 5162.Google Scholar
Harms, J. and Seeger, B. (1989) Larval development and survival in seven decapods species (Crustacea) in relation to laboratory diet. Journal of Experimental Marine Biology and Ecology 133, 129139.Google Scholar
Hayes, F.E., Joseph, V.L., Gurley, H.S. and Wong, B.Y.Y. (1998) Selection by two decapod crabs (Percnon gibbesi and Stenorhynchus seticornis) associating with an urchin (Diadema antillarum) at Tobago, West Indies. Bulletin of Marine Science 63, 241247.Google Scholar
Hernández, J.E., Bolaños, J., Hernández, G. and Magán, I. (1999) Estudios preliminares del efecto de la inanición en el desarrollo larval de Stenorhynchus seticornis (Herbst, 1788) (Crustacea: Brachyura: Majidae). Acta Científica Venezolana 50, 188.Google Scholar
Hicks, G. (1973) Combined effects of temperature and salinity on Hemigrapsus edwardsi (Hilgendorf) and H. creonulatus (Milne-Edwards) from Wellington Harbour, New Zealand. Journal of Experimental Marine Biology and Ecology 13, 14.Google Scholar
Jackson, G.A. and Strathmann, R.R. (1981) Larval mortality from offshore mixing as a link between precompetent and competent periods of development. The American Naturalist 118, 1626.Google Scholar
Lárez, M.B., Palazón-Fernández, J.L. and Bolaños, J. (2000) The effect of salinity and temperature on the larval development of Mithrax caribbaeus Rathbun, 1920 (Brachyura: Majidae) reared in laboratory. Journal of Plankton Research 22, 18551869.Google Scholar
Laughlin, R. (1983) The effects of temperature and salinity on larval growth of the horseshoe crab Limulus polyphemus. Biological Bulletin. Marine Biological Laboratory, Woods Hole 164, 93103.Google Scholar
Li, H.Y. and Hong, S.Y. (2007) The effect of temperature and salinity on survival and growth of Crangon uritai (Decapoda: Crangonidae) larvae reared in the laboratory. Marine Ecology 28, 288295.Google Scholar
Lin, J. and Shi, H. (2002) Effect of broodstock diet on reproductive performance of the golden banded coral shrimp Stenopus scutellatus. Journal of the World Aquaculture Society 33, 383386.Google Scholar
Luppi, T.A., Spivak, E.D. and Bas, C.C. (2003) The effects of temperature and salinity on larval development of Armases rubripes Rathbun, 1897 (Brachyura, Grapsoidea, Sesarmidae), and the southern limit of its geographical distribution. Estuarine, Coastal and Shelf Science 58, 575585.Google Scholar
Melo, G. (1996) Manual de identificação dos Brachyura (Caranguejos e siris) do litoral brasileiro. São Paulo: Editora Plêiade.Google Scholar
Mene, L., Alvarez-Ossorio, M.T., González-Gurriarán, E. and Valdés, E. (1991) Effects of temperature and salinity on larval development of Necora puber (Brachyura: Portunidae). Marine Biology 108, 7381.Google Scholar
Morgan, S.G. (1995) Life and death in the plankton: larval mortality and adaptation. In McEdward, L. (ed.) Ecology of marine invertebrate larvae. Boca Raton, FL: CRC Press, pp. 279321.Google Scholar
Nagaraj, M. (1992) Combined effects of temperature and salinity on the development of the copepod Eurytemora affinis. Aquaculture 103, 6571.Google Scholar
Nagaraj, M. (1993) Combined effects of temperature and salinity on the zoeal development of the green crab Carcinus maenas (Linnaeus, 1758) (Decapoda: Portunidae). Scientia Marina 57, 18.Google Scholar
New, M.B. and Singholka, S. (1984) Cultivo del camarón de agua dulce. Manual para el cultivo de Macrobrachium rosenbergii. FAO Documento Técnico de Pesca 225, 1118.Google Scholar
Okamori, C.M. and Cobo, V.J. (2003) Fecundity of the arrow crab Stenorhynchus seticornis on the southern Brazilian coast. Journal of the Marine Biological Association of the United Kingdom 83, 979980.Google Scholar
Ong, K. and Costlow, J.D. (1970) The effect of salinity and temperature on the larval development of the stone crab, Menippe mercenaria (Say), reared in the laboratory. Chesapeake Science 11, 1629.Google Scholar
Ortiz, F., Sandoval, M. and Araneda, G. (1991) Metodología y recomendaciones técnicas para la cualificación y utilización de las cepas nativas de Artemia. Boletín de la Red de Acuicultura 5, 1523.Google Scholar
Passano, L.M. (1960) Molting and its control. In Waterman, T.H. (ed.) The physiology of Crustacea, Volume I. New York: Academic Press, pp. 473536.Google Scholar
Paula, J., Nogueira Mendes, R., Paci, S., McLaughlin, P., Gherardu, F. and Emmerson, W. (2001) Combined effects of temperature and salinity on the larval development of the estuarine mud prawn Upogebia africana (Crustacea, Thalassinidea). Hydrobiologia 449, 141148.Google Scholar
Paula, J., Nogueira Mendes, R., Mwaluma, J., Raedig, C. and Emmerson, W. (2003) Combined effects of temperature and salinity on larval development of the mangrove crab Parasesarma catenata Ortman, 1897 (Brachyura: Sesarmidae). Western Indian Ocean Journal of Marine Science 2, 5763.Google Scholar
Quintero, L.G. (1986) Efecto de varias dietas en la sobrevivencia y tiempo de duración de los estadios larvales de los cangrejos Mithrax caribbaeus Rathbun, 1920 y Stenorhynchus seticornis Herbst, 1788 (Decapoda: Brachyura) en condiciones de laboratorio. Undergraduate thesis. Universidad de Oriente, Boca del Río, Venezuela.Google Scholar
Rengel, I., Chung, K., Bolaños, J. and Fermín, J. (1993) El efecto de la interacción entre el cadmio, la salinidad y la temperatura sobre el desarrollo larval de Mithrax verrucosus Milne-Edwards 1832 (Crustacea, Decapoda, Majidae). Ciencia 1, 1325.Google Scholar
Rhyne, A.L., Penha-Lopes, G. and Lin, J. (2005) Growth, development, and survival of larval Mithraculus sculptus (Lamark) and Mithraculus forceps (A. Milne-Edwards) (Decapoda: Brachyura: Majidae): economically important marine ornamental crabs. Aquaculture 245, 183191.Google Scholar
Rodríguez, B., Medina, D. and Arrue, M. (1990) Nutrición de larvas de Mithrax spinosissimus en aguas del Pacífico. Boletín de la Red de Acuicultura 4, 1517.Google Scholar
Sandifer, P.A. (1973) Effects of temperature and salinity on larval development of grass shrimp, Palaemonetes vulgaris (Decapoda, Caridea). Fishery Bulletin 71, 115123.Google Scholar
Sastry, A. (1970) Culture of brachyuran crab larvae using re-circulating seawater system in the laboratory. Helgoländer Wissenschaftliche Meeresuntersuchungen 20, 406416.Google Scholar
Sastry, A. (1983) Pelagic larval ecology and development. In Vernberg, F.J. and Vernberg, W.B. (eds) The biology of Crustacea, Volume 7. Behavior and ecology. New York: Academic Press, pp. 214269.Google Scholar
Scotto, L. and Gore, R. (1980) Larval development under laboratory conditions of the tropical spider crab Mithrax (Mithraculus) coryphe (Herbst, 1801) (Brachyura: Majidae). Proceedings of the Biological Society of Washington 93, 551562.Google Scholar
Skinner, D.M. (1985) Molting and regeneration. In Bliss, D. and Mantel, L.H. (eds) The biology of Crustacea, Volume 9. New York: Academic Press, pp. 43146.Google Scholar
Sokal, R.R. and Röhlf, F.J. (1981) Biometry. San Francisco: W.H. Freeman.Google Scholar
Stevens, B.G. (2003) Settlement, substratum preference, and survival of red king crab Paralithodes camtschaticus (Tilesius, 1815) glaucothoe on natural substrata in the laboratory. Journal of Experimental Marine Biology and Ecology 283, 6378.Google Scholar
Sulkin, S. and McKeen, G. (1994) Influence of temperature on larval development of four co-occurring species of the brachyuran genus Cancer. Marine Biology 118, 593600.Google Scholar
Suprayudi, M.A., Takeuchi, T. and Hamasaki, K. (2004) Essential fatty acids for larval mud crab Scylla serrata: implications of lack of the ability to convert C18 unsaturated fatty acids to highly unsaturated fatty acids. Aquaculture 231, 403416.Google Scholar
Thorson, G. (1950) Reproductive and larval ecology of marine bottom invertebrates. Biological Reviews 25, 145.Google Scholar
Williams, A. (1984) Shrimps, lobsters and crabs of the Atlantic coast of the eastern United States, Maine to Florida. Washington, DC: Smithsonian Institution Press.Google Scholar
Wilson, K., Scotto, L. and Gore, R. (1979) Studies on decapod Crustacea from the Indian River region Florida. XIII. Larval development under laboratory conditions of the spider crab, Mithrax forceps (A. Milne-Edwards, 1875) (Brachyura: Majidae). Proceedings of the Biological Society of Washington 90, 735752.Google Scholar
Yang, W. (1976) Studies on the western Atlantic arrow crab genus Stenorhynchus (Decapoda: Brachyura: Majidae). I. Larval characters of two species and comparison with other larvae of Inachinae. Crustaceana 31, 157177.Google Scholar
Zacharia, S. and Kakati, V.S. (2004) Optimal salinity and temperature for early developmental stages of Penaeus merguiensis De Man. Aquaculture 232, 373382.Google Scholar