Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-28T22:56:42.443Z Has data issue: false hasContentIssue false

The impact of photoperiodicity on hatching of Loligo vulgaris and Loligo forbesi

Published online by Cambridge University Press:  11 May 2009

W.P. Paulij
Affiliation:
Zoology Department I, Catholic University, Toernooiveld, 6525 ED Nijmegen, The Netherlands
P.M.J. Herman
Affiliation:
Delta Institute for Hydrobiological Research, Vierstraat 28, 4401 EA Yerseke, The Netherlands
J.M. Denucé
Affiliation:
Delta Institute for Hydrobiological Research, Vierstraat 28, 4401 EA Yerseke, The Netherlands

Abstract

The influence of photoperiodicity on hatching of Loligo forbesi and Loligo vulgaris embryos was investigated under different experimental light-dark (LD) conditions. The transition from light to dark stimulated hatching and functions as a ‘Zeitgeber’ or synchronizer. Independent of the timing and duration of the dark period most embryos hatched soon after termination of the light period. Embryos which had developed in constant light, showed no hatching rhythm at all. If these embryos were exposed to a dark shock most embryos hatched soon after the onset of darkness. A twilight shock, in which the light was reduced by 50% (i.e. 50 μE s−1 m−2), could not stimulate hatching. Embryos which were kept from stage X on in an artificially controlled LD cycle, preferentially hatch in a period which coincides with the period at which darkness usually occurred when placed in constant illumination from stage XX onwards.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnold, J.M., 1964. Normal embryonic stages of the squid, Loligo pealii (Lesueur). Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 128, 2432.CrossRefGoogle Scholar
Arnold, J.M., 1971. Cephalopods. In Experimental Embryology of Marine and Freshwater Invertebrates (ed. G., Reverberi), pp 265311. Amsterdam: North-Holland Publishing Co.Google Scholar
Boletzky, S. Von, 1987. On egg and capsule dimensions in Loligo forbesi (Mollusca: Cephalopoda): a note. Vie et Milieu, 37, 187192.Google Scholar
Boletzky, S. Von, Frosch, D. & Mangold, K., 1970. Developpement des vésicules associées au complexe brachial chez les Céphalopodes. Compte Rendu de l'Académie des Sciences, 270, 21822184.Google Scholar
Boycott, B.B. & Young, J.Z., 1956. The subpedunculate body and nerve and other organs associated with the optic tract in cephalopods. In Bertil Hanström: Papers in Honour of his Sixty-fifth Birthday (ed. K.G., Wingstrand), pp. 76105. Lund: Zoological Institute.Google Scholar
Denucé, J.M. & Formisano, A., 1982. Circumstantial evidence for an active contribution of Hoyle's gland to enzymatic hatching of cephalopod embryos. Archives Internationales de Physiologie et de Biochimie, 90, B185186.Google Scholar
Fioroni, P., 1978. Cephalopoda. In Morphogenese der Tiere, pt. 2 (G5-I) (ed. F., Seidel), 181 pp. Stuttgart-New York: G. Fischer Verlag.Google Scholar
Holme, N.A., 1974. The biology of Loligo forbesi Steenstrup (Mollusca: Cephalopoda) in the Plymouth area. Journal of the Marine Biological Association of the United Kingdom, 54, 481503.CrossRefGoogle Scholar
Hoyle, W.E., 1889. Zur embryonalen und postembryonalen Entwicklung der Epidermis bei zehnarmigen Tintenfischen. Proceedings of the Royal Physical Society, 10, 5860.Google Scholar
Laroe, E.T., 1971. The culture and maintenance of the loliginid squids Sepioteuthis sepioidea and Doryteuthis plei. Marine Biology, 9, 925.CrossRefGoogle Scholar
Mauro, A., 1977. Extra-ocular photoreceptors in cephalopods. Symposia of the Zoological Society of London, no. 38, 287308.Google Scholar
Naef, A., 1923. Die Cephalopoden. Fauna und Flora des Golfes von Neapel, 35A, 149863.Google Scholar
Naef, A., 1928. Die Cephalopoden. Fauna und Flora des Golfes von Neapel, 35B, 1357.Google Scholar
Nishioka, R.S., Yasumasu, T., Packard, A., Bern, H. & Young, J.Z., 1966. Nature of vesicles associated with the nervous system of cephalopods. Zeitschrift für Zellforschung und Mikroskopische Anatomie, 75, 301316.CrossRefGoogle ScholarPubMed
Orelli, M. Von, 1959. Über das Schlüpfen von Octopus vulgaris, Sepia officinalis und Loligo vulgaris. Revue Suisse de Zoologie, 66, 330343.CrossRefGoogle Scholar
Poole, H.H. & Atkins, R.G., 1937. The penetration into sea of light of various wavelengths as measured by emission of rectifier photo-electric cells. Proceedings of the Royal Society (B), 123, 153165.Google Scholar
Roper, C.F.E., Sweeney, M.J. & Nauen, C.E., 1984. FAO species catalogue, vol. 3. Cephalopods of the world. An annotated and illustrated catalogue of species of interest to fisheries. FAO Fisheries Synopsis, no. 125, 277 pp.Google Scholar
Schoots, A.F.M., Meijer, R.C. & Denucé, J.M., 1983. Dopaminergic regulation of hatching in fish embryos. Developmental Biology, 100, 5963.CrossRefGoogle ScholarPubMed
Sewaga, S., Yang, W.T., Marthy, H.J. & Hanlon, R.T., 1988. Illustrated embryonic stages of the eastern Atlantic squid Loligo forbesi. Veliger, 30, 230243.Google Scholar
Sokal, R.R. & Rohlf, F.J., 1981. Biometry, 2nd ed.New York: W.H. Freeman and Company.Google Scholar
Sollberger, A., 1965. Biological Rhythm Research. Amsterdam: Elsevier Publishing Company.Google Scholar
Southward, A.J., 1960. On changes of the sea temperature in the English Channel. Journal of the Marine Biological Association of the United Kingdom, 39, 449458.CrossRefGoogle Scholar
Wittland, C. & Fioroni, P., 1982. Zum ontogenetischen Auftreten von ectodermalen Vesikeln bei dibranchiaten Cephalopoden. Zoologische Beiträge, 28, 6777.Google Scholar
Worms, J. 1983. Loligo vulgaris. In Cephalopod Life Cycles, vol. 1 (ed. P.R., Boyle), pp. 143159. London: Academic Press.Google Scholar
Yamagami, K. & Hamazaki, T., 1985. Influence of light on hatching of medaka embryos. Zoological Science, 2, 928.Google Scholar