Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-16T22:31:13.128Z Has data issue: false hasContentIssue false

Influence of Temperature on embryonic and larval development in Necora puber (Brachyura, Portunidae)

Published online by Cambridge University Press:  11 May 2009

L. Valdes
Affiliation:
Instituto Español de Oceanografía, Aptdo 240, Santander, Spain
M. T. Alvarez-Ossorio
Affiliation:
Instituto Español de Oceanografia, Aptdo 130, La Coruña, Spain
E. Gonzalez-Gurriaran
Affiliation:
Departamento de Biología Animal, Universidad de La Coruña, 15071 La Coruña, Spain

Extract

The influence of temperature on the duration of the embryonic and larval development in Necora puber (L., 1767) was studied. Nine different temperatures were used for the eggs and seven for the larvae, in both cases ranging from 2 to 35°C. The temperature range where visible development was obtained was between 4 and 31°C, with the lowest lethal temperature (temperature at which the eggs did not show any sign of development and development did not resume when the eggs were placed at 15°C) being between 2 and 4°C and the highest lethal temperature between 31 and 35°C for both eggs and larvae.

Temperature was found to be inversely related to developmental time. The incubation period (D) fluctuated between 76 days at 10°C and 17·6 days at 25°C, with an increase in the rate of development (100/D) from 1·13 to 5·55 between these two temperatures. The larval period varied between 48·5 days at 15°C and 28 days at 25°C with rates of development of 2·08 and 3·57 respectively. The adjustment equations used show that temperature has a greater accelerating effect on eggs than on larvae. A simple potential equation, D=aT, describes the relationship between temperature and developmental time better than the Belehrádek equation, D=a(T-t).

Acording to the fitted equations developmental time from spawning to the first postlarval stage is completed in 91–105 days at temperatures of 13–15°C which is very close to our experimental data. The model proposed also fits most of the data from the available literature even those for other species such as Liocarcinus holsatus (Fabricius, 1798) and Carcinus maenas (L., 1758), which suggests that a similar response of developmental time vs temperature could be expected from other related Portunidae.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alderdice, D.F. & Velsen, F.P.J., 1978. Relation between temperature and incubation time for eggs of chinook salmon (Oncorhynchus tshaivytscha). Journal of the Fisheries Research Board of Canada, 35, 6975.CrossRefGoogle Scholar
Belehrádek, J., 1935. Temperature and living matter. Protoplasma, Monographie, no. 8, 277 pp. Berlin: Borntraeger.Google Scholar
Blaxter, J.H.S., 1956. Herring rearing - II. The effect of temperature and other factors on development. Marine Research, no. 5, 19 pp.Google Scholar
Borja, A., 1988. La población de nécora, Liocarcinus puber Linneo (1767) (Decapoda, Brachyura) en la costa vasca (N. España). Investigatión Pesquera, 52, 277281.Google Scholar
Cabanas, J.M., Nunes, M.T., Iglesias, M.L., González, N. & Carballo, R., 1987. Oceanografía de la bahía de La Coruña. Boletín del Instituto Español de Oceanografía, 4, 2128.Google Scholar
Choy, S.C., 1988. Reproductive biology of Liocarcinus puber and L. holsatus (Decapoda, Brachyura, Portunidae) from the Gower Peninsula, South Wales. Marine Ecology, 9, 227241.CrossRefGoogle Scholar
Christiansen, M.E. & Costlow, J.D., 1975. The effect of salinity and cyclic temperature on larval development of the mud-crab Rhithropanopeus harrisii (Brachyura: Xanthidae) reared in the laboratory. Marine Biology, 32, 215221.CrossRefGoogle Scholar
Corkett, C.J. & McLaren, I.A., 1970. Relationships between development rate of eggs and older stages of copepods. Journal of the Marine Biological Association of the United Kingdom, 50, 161168.CrossRefGoogle Scholar
Costlow, J.D., Jr, 1967. The effect of salinity and temperature on survival and metamorphosis of megalops of the blue crab, Callinectes sapidus. Helgoländer Wissenschaftliche Meeresuntersuchungen, 15, 8497.CrossRefGoogle Scholar
Costlow, J.D., Jr & Bookhout, C.G., 1971. The effect of cyclic temperatures on larval development in the mud-crab Rhithropanopeus harrisii. In Fourth European Marine Biology Symposium (ed. D.J., Crisp), pp. 211220. Cambridge University Press.Google Scholar
Costlow, J.D., Jr, Bookhout, C.G. & Monroe, R., 1960. The effect of salinity and temperature on larval development of Sesarma cinereum (Bosc) reared in the laboratory. Biological Bulletin. Marine Biological Laboratory, Woods Hole, 118, 183202.CrossRefGoogle Scholar
Costlow, J.D., Jr, Bookhout, C.G. & Monroe, R., 1962. Salinity-temperature effects on the larval development of the crab, Panopeus herbstii Milne-Edwards, reared in the laboratory. Physiological Zoology, 35, 7993.CrossRefGoogle Scholar
Dawirs, R.R., 1985. Temperature and larval development of Carcinus maenas (Decapoda) in the laboratory; predictions of larval dynamics in the sea. Marine Ecology Progress Series, 24,297302.CrossRefGoogle Scholar
Dekhnik, T.V., 1960. Mortality coefficients during the embryonic and larval periods of development of the Black Sea anchovy. Trudy Sevastopol Skoi Biologicheskoi Stantsii, 13, 216244. [Maff Fisheries Laboratory, Lowestoft, translation 1962.]Google Scholar
Drach, P., 1939. Mue et cycle d'intermue chez les Crustacés decapodes. Annales de L'Institut Oceanographique, 19, 103391.Google Scholar
Edwards, E., 1979. The Edible Crab and its Fishery in British Waters. Farnham, Surrey: Fishing News Books.Google Scholar
González-Gurriarán, E., 1981a. Preliminary data on the population dynamics of the velvet swimming crab (Macropipus puber L.) in the Ría de Arousa (Galicia N.W. Spain). ICES (Shellfish and Benthos Committee), CM 1981/K:16, 21 pp.Google Scholar
González-Gurriarán, E., 1981b. La Nécora Macropipus puber (Linnaeus, 1767) (Decapoda, Portunidae) en los Polígonos de Bateas de la Ría de Arousa: contributi´on al Estudio de su Biología. Resumen de la tesis presentada para aspirar al grado de Doctor en Biología. Universidad de Santiago de Compostela, España.Google Scholar
González-Gurriarán, E., 1985. Reproductión de la nécora Macropipus puber (L.) (Decapoda, Brachyura), y cicloreproductivo en la Ría de Arousa (Galicia, N.W. España). Boletín del Instituto Español de Oceanografía, 2, 1032.Google Scholar
Johns, D.M., 1981. Physiological studies on Cancer irroratus larvae. I. Effects of temperature and salinity on survival, development rate and size. Marine Ecology Progress Series, 5, 7583.CrossRefGoogle Scholar
Kietzmann, V., Priebe, K., Rakow, D. & Reichstein, K., 1974. Inspectión Veterinaria de Pescados. Manual para la Inspectión de Peces, Crustaceos y Moluscos como Alimento. Zaragoza: Ediciones Acribia.Google Scholar
Kinnear, J.A.M. & Mason, J., 1987. A preliminary study of an unfished population of the velvet swimming crab Liocarcinus puber (L.). ICES (Shellfish and Benthos Committee), CM 1987/K:6, 10 pp.Google Scholar
Landry, M.R., 1975. Seasonal temperature effects and predicting development rates of marine copepod eggs. Limnology and Oceanography, 20, 434440.CrossRefGoogle Scholar
Lasker, R., 1964. An experimental study of the effect of temperature on the incubation time, development, and growth of Pacific sardine embryos and larvae. Copeia, 1964, 399405.CrossRefGoogle Scholar
Macmullen, P.H., 1983a. The fishery of the velvet swimming crab Macropipus puber. Technical Report, Sea Fish Industry Authority, no. 218, 22 pp.Google Scholar
Macmullen, P.H., 1983b. The Velvet Crab Fishery — Vessel Operating Profile And Other Information. International Report, Sea Fish Industry Authority, no. 1128, 8 pp.Google Scholar
Margalef, R., 1974. Ecología. Barcelona: Ediciones Omega.Google Scholar
Martin, J., 1980. Abondance des larves d'etrille (Macropipus puber L.) d'araignée (Maia squinado, Herbst) et de tourteau (Cancer pagurus L.) sur le côte ouest du Cotentin (Manche) de 1977 à 1979. ICES (Shellfish and Benthos Committee), CM 1980/K:21, 15 pp.Google Scholar
McLaren, I.A., 1963. Effects of temperature on growth of zooplankton, and the adaptive value of vertical migration. Journal of the Fisheries Research Board of Canada, 20, 685727.CrossRefGoogle Scholar
McLaren, I.A., 1966. Predicting development rate of copepod eggs. Biological Bulletin. Marine Biological Laboratory, Woods Hole, 131, 457469.CrossRefGoogle Scholar
Mene, L.J., 1985. Estudio de la Biología Larvaria de Liocarcinus puber (Linnaeus, 1768). Tesis de Licenciatura, Departamento de Zoología, Facultad de Biología, Universidad de Santiago de Compostela, España.Google Scholar
Mene, L., Alvarez-Ossorio, M.T., González-Gurriarán, E. & Valdés, L., 1991. Effects of temperature and salinity on larval development of Necora puber (Brachyura, Portunidae). Marine Biology, 108, 7381.CrossRefGoogle Scholar
Ong, K.S. & Costlow, J.D., Jr, 1970. The effect of salinity and temperature on the larval development of the stone crab, Menippe mercenaria (Say), reared in the laboratory. Chesapeake Science, 11, 1629.CrossRefGoogle Scholar
Peterson, R.H., Spinney, H.C.E. & Sreedharan, A., 1977. Development of Atlantic salmon (Salmo salar) eggs and alevins under varied temperature regimes. journal of the Fisheries Research Board of Canada, 34, 3143.CrossRefGoogle Scholar
Rice, A.L. & Ingle, R.W., 1975. A comparative study of the larval morphology of the British portunid crabs Macropipus puber (L.) and M. holsatus (Fabricius), with a discussion of generic and sub-familial larval characters within the Portunidae. Bulletin of the British Museum Natural History (Zoology), 28, 123151.Google Scholar
Ryland, J.S. & Nichols, J.H., 1975. Effect of temperature on the embryonic development of the plaice Pleuronectes platessa L. (Teleostei). Journal of Experimental Marine Biology and Ecology, 18, 121137.CrossRefGoogle Scholar
Thompson, B.M., 1982. Growth and development of Pseudocalanus elongatus and Calanus sp. in the laboratory. Journal of the Marine Biological Association of the United Kingdom, 62, 359372.CrossRefGoogle Scholar
Valdes, J.L. & Alvarez-Ossorio, M.T., 1983. Datos preliminares sobre el desarrollo larvario de Macropipus puber (Linnaeus, 1767) y Pisidia longicornis (Linnaeus, 1767) en condiciones de laboratorio. Informes Técnicos Instituto Español de Oceanografía, 16, 118.Google Scholar
Valdés, L., Alvarez-Ossorio, M.T. & González-Gurriarán, E., 1991. Incubation of eggs of Necora puber (L., 1767) (Decapoda, Brachyura, Portunidae). Volume and biomass changes in embryonic development. Crustaceana, 60, 163177.CrossRefGoogle Scholar
Van't Hoff, J.H., 1884. Etudes de dynamique chimique. Amsterdam.Google Scholar
Wallace, J.C. & Heggberget, T.G., 1988. Incubation of eggs of Atlantic salmon (Salmo salar) from different Norwegian streams at temperatures below 1°C. Canadian Journal of Fisheries and Aquatic Sciences, 45, 193196.CrossRefGoogle Scholar
Wear, R.G., 1974. Incubation in British decapod Crustacea, and the effects of temperature on the rate and success of embryonic development. Journal of the Marine Biological Association of the United Kingdom, 54, 745762.CrossRefGoogle Scholar
Wilhelm, G., 1985. L'etrille dans le Mor-Bras. Etude preliminaire. Cahiers du Mor-Bras. Vannes-France, 10, 1104.Google Scholar
Zar, J.H., 1984. Biostatistical analysis. New Jersey: Prentice-Hall International.Google Scholar