Skip to main content
×
×
Home

Inventory and comparison of abundance of parasitic copepods on fish hosts in the western Wadden Sea (North Sea) between 1968 and 2010

  • Wouter Koch (a1), Peter Boer (a1), Johannes IJ. Witte (a1), Henk W. Van der Veer (a1) and David W. Thieltges (a1)...
Abstract

A conspicuous part of the parasite fauna of marine fish are ectoparasites, which attach mainly to the fins or gills. The abundant copepods have received much interest due to their negative effects on hosts. However, for many localities the copepod fauna of fish is still poorly known, and we know little about their temporal stability as long-term observations are largely absent. Our study provides the first inventory of ectoparasitic copepods on fish from the western Wadden Sea (North Sea) based on field data from 1968 and 2010 and additional unpublished notes. In total, 47 copepod parasite species have been recorded on 52 fish host species to date. For two copepod species parasitizing the European flounder (Platichthys flesus), a quantitative comparison of infection levels between 1968 and 2010 was possible. Whereas Acanthochondria cornuta did not show a change in the relationship between host size and infection levels, Lepeophtheirus pectoralis shifted towards the infection of smaller hosts, with higher infection levels in 2010 compared to 1968. These differences probably reflect the biology of the species and the observed decrease in abundance and size of flounders during the last decades. The skin-infecting L. pectoralis can probably compensate for dwindling host abundance by infecting smaller fish and increasing its abundance per given host size. In contrast, the gill cavity inhabiting A. cornuta probably faces a spatial constraint (fixed number of gill arches), thus limiting its abundance and setting a minimum for the host size necessary for infections.

Copyright
Corresponding author
Correspondence should be addressed to: D. W. Thieltges, Department of Marine Ecology; NIOZ Royal Netherlands Institute for Sea Research; PO Box 59, 1790 AB Den Burg Texel, The Netherlands email: David.Thieltges@nioz.nl
References
Hide All
Bere, R. (1936) Parasitic copepods from Gulf of Mexico fish. American Midland Naturalist 17, 577625.
Boxshall, G.A. (2009) Infections with parasitic copepods in North Sea marine fish. Journal of the Marine Biological Association of the United Kingdom 54, 355372.
Causey, D. (1960) Parasitic copepoda from Mexican coastal fishes. Bulletin of Marine Science 10, 323337.
Cavaleiro, F.I. and Santos, M.J. (2011) Site selection of Acanthochondria cornuta (Copepoda: Chondracanthidae) in Platichthys flesus (Teleostei: Pleuronectidae). Parasitology 138, 10611067.
Daan, N., Gislason, H., Pope, J.G. and Rice, J.C. (2005) Changes in the North Sea fish community: evidence of indirect effects of fishing? ICES Journal of Marine Science 62, 177188.
Dogiel, V.A., Petrushevski, G.K. and Polyanski, Y.I. (1953) Parasitology of fishes (translated by Kabata, Z. (1961)). Edinburgh: Oliver & Boyd.
Groenewold, S., Berghahn, R. and Zander, C.D. (1996) Parasite communities of four fish species in the Wadden Sea and the role of fish discarded by the shrimp fisheries in parasite transmission. Helgoländer Meeresuntersuchungen 50, 6985.
Hechinger, R.F., Lafferty, K.D. and Kuris, A.M. (2008) Trematodes indicate animal biodiversity in the Chilean intertidal and Lake Tanganyika. Journal of Parasitology 94, 966968.
Heegaard, P. (1962) Parasitic copepoda from Australian waters. Records of the Australian Museum 25, 149233.
Jørgensen, C., Enberg, K., Dunlop, E.S., Arlinghaus, R., Boukal, D.S., Brander, K., Ernande, B., Gærdmark, A., Johnston, F., Matsumura, S., Pardoe, H., Raab, K., Silva, A., Vainikka, A., Dieckmann, U., Heino, M. and Rijnsdorp, A.D. (2007) Managing evolving fish stocks. Science 318, 1247–1248.
Kabata, Z. (1959) Ecology of the genus Acanthochondria Oakley (Copepoda Parasitica). Journal of the Marine Biological Association of the United Kingdom 38, 249261.
Kabata, Z. (1979) Parasitic copepoda of British fishes. London: The Ray Society.
Kabata, Z. (2003) Copepods parasitic on fishes. In Synopses of the British Fauna 47. Shrewsbury: Field Studies Council.
Kleinertz, S., Klimpel, S. and Palm, H.W. (2011) Parasite communities and feeding ecology of the European sprat (Sprattus sprattus L.) over its range of distribution. Parasitology Research 110, 11471157.
Krkošek, M., Connors, B.M., Morton, A., Lewis, M.A., Dill, L.M. and Hilborn, R. (2011) Effects of parasites from salmon farms on productivity of wild salmon. Proceedings of the National Academy of Sciences of the United States of America 108, 1470014704.
Krkošek, M., Ford, J.S., Morton, A., Lele, S., Myers, R.A. and Lewis, M.A. (2007) Declining wild salmon populations in relation to parasites from farm salmon. Science 318, 17721775.
Law, R. (2000) Fishing, selection, and phenotypic evolution. ICES Journal of Marine Science 57, 659668.
Lotze, H.K., Reise, K., Worm, B., van Beusekom, J., Busch, M., Ehlers, A., Heinrich, D., Hoffmann, R.C., Holm, P., Jensen, C., Knottnerus, O.S., Langhanki, N., Prummel, W., Vollmer, M. and Wolff, W.J. (2005) Human transformations of the Wadden Sea ecosystem through time: a synthesis. Helgoland Marine Research 59, 8495.
Möller, H. and Anders, K. (1986) Techniques in fish parasitology. In Möller, H. and Anders, K. (eds) Diseases and parasites of marine fishes. Kiel: Möller, pp. 331339.
Mouritsen, K.N. and Poulin, R. (2002) Parasitism, community structure and biodiversity in intertidal ecosystems. Parasitology 124, S101S117.
Palm, H.W., Klimpel, S. and Bucher, C. (1999) Checklist of metazoan fish parasites of German coastal waters. Berichte aus dem Institut für Meereskunde an der Christian-Albrechts-Universität Kiel 307, 148 pp.
Poulin, R. (1996) The evolution of life history strategies in parasitic animals. Advances in Parasitology 37, 107134
Poulin, R., Krasnov, B.R., Mouillot, D. and Thieltges, D.W. (2011) The comparative ecology and biogeography of parasites. Philosophical Transactions of the Royal Society B 366, 23792390.
Raibaut, A. and Combes, C. (1998) Analysis of the parasitic copepod species richness among Mediterranean fish. Journal of Marine Systems 15, 185206.
Reise, K. and van Beusekom, J. (2008) Interactive effects of global and regional change on a coastal ecosystem. Helgoland Marine Research 62, 8591.
Rijnsdorp, A.D., van Leeuwen, P.I., Daan, N. and Heessen, H.J.L. (1996) Changes in abundance of demersal fish species in the North Sea between 1906–1909 and 1990–1995. ICES Journal of Marine Science 53, 10541062.
Schmidt, V., Zander, S., Körting, W. and Steinhagen, D. (2003) Parasites of the flounder Platichthys flesus (L.) from the German Bight, North Sea, and their potential use in ecosystem monitoring. A. Infection characteristics of potential indicator species. Helgoland Marine Research 57, 236251.
Scott, T. and Scott, A. (1912) The British parasitic copepoda, vol. I and II. London: The Ray Society.
Sousa, W.P. (1991) Can models of soft-sediment community structure be complete without parasites? American Zoologist 31, 821830.
Sukhdeo, M.V.K. (2012) Where are the parasites in food webs? Parasites & Vectors 5, 239.
Tully, O. and Nolan, D.T. (2002) A review of the population biology and host–parasite interactions of the sea louse Lepeophtheirus salmonis (Copepoda: Caligidae). Parasitology 124, 165182.
Tulp, I., Bolle, L.J. and Rijnsdorp, A.D. (2008) Signals from the shallows: in search of common patterns in long-term trends in Dutch estuarine and coastal fish. Journal of Sea Research 60, 5473.
van der Meer, J., Witte, J.IJ. and van der Veer, H.W. (1995) The suitability of a single intertidal fish trap for the assessment of long-term trends in fish and epibenthic invertebrate populations. Environmental Monitoring and Assessment 36, 139148.
van der Veer, H.W., Witte, J.IJ., Beumkes, H.A., Dapper, R., Jongejan, W.P. and van der Meer, J. (1992) Intertidal fish traps as a tool to study long-term trends in juvenile flatfish populations. Netherlands Journal of Sea Research 29, 119126.
van der Veer, H.W., Koot, J., Aarts, G., Dekker, R., Diderich, W., Freitas, V. and Witte, J.IJ. (2011) Long-term trends in juvenile flatfish indicate a dramatic reduction in nursery function of the Balgzand intertidal, Dutch Wadden Sea. Marine Ecology Progress Series 434, 143154.
Vidal-Martinez, V.M., Pech, D., Sures, B., Purucker, S.T. and Poulin, R. (2010) Can parasites really reveal environmental impact? Trends in Parasitology 26, 4451.
Wood, C.L., Lafferty, K.D. and Micheli, F. (2010) Fishing out marine parasites? Impacts of fishing on rates of parasitism in the ocean. Ecology Letters 13, 761775.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the Marine Biological Association of the United Kingdom
  • ISSN: 0025-3154
  • EISSN: 1469-7769
  • URL: /core/journals/journal-of-the-marine-biological-association-of-the-united-kingdom
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed