Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T08:07:45.665Z Has data issue: false hasContentIssue false

Littoral Harpacticoida (Crustacea: Copepoda) of Madeira and Porto Santo (Portugal)

Published online by Cambridge University Press:  09 September 2016

Jana Packmor*
Affiliation:
Siebethsburger Str. 18, D-26386 Wilhelmshaven, Germany
Kai Horst George
Affiliation:
Senckenberg am Meer, DZMB – Deutsches Zentrum für Marine Biodiversitätsforschung, Südstrand 44, D-26382 Wilhelmshaven, Germany
*
Correspondence should be addressed to:J. Packmor, Siebethsburger Str. 18, D-26386 Wilhelmshaven, Germany email: jana_packmor@yahoo.de

Abstract

The aim of the present investigation is a thorough inventory of the Harpacticoida (Copepoda) of the Portuguese islands Madeira and Porto Santo to provide a basis for comparisons of the harpacticoid faunas of successive elevations of the so called ‘Madeira Hot Spot Track’. Quantitative samples from 10 sampling locations at the coastlines of both islands were analysed (eight from Madeira and two from Porto Santo) and revealed a total of 27 families of Harpacticoida. Nine of the families were determined on species level comprising 43 species of which 31 were new to science. Comparisons of the family and species assemblages at the different Madeiran sampling locations indicate strong habitat heterogeneity as well as differences of the southern from all remaining locations. The sampling locations at the north and east coast are predominately characterized by interstitial taxa, those of the south coast by more robust burrowing or epibenthic taxa. Furthermore the two easternmost sampling locations of Madeira show clear similarity in terms of their harpacticoid assemblages with the sampling locations of Porto Santo. Eighty-eight per cent of the determined species of Porto Santo occur at the coast of Madeira as well (predominately at the easternmost sampling locations) indicating dispersal of Harpacticoida between both islands.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alves Rodrigues, L.A. (2010) Gestão de sedimentos na zona costeira – alimentações artificiais . Doctoral thesis. Universidade de Aveiro, Aveiro, Portugal.Google Scholar
Anderson, M.J., Gorley, R.N. and Clarke, K.R. (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. Plymouth: PRIMER-E.Google Scholar
Ávila, S.P. and Malaquias, M.A.E. (2003) Biogeographical relationships of the molluscan fauna of the Ormonde Seamount (Gorringe Bank, Northeast Atlantic Ocean). Journal of Molluscan Studies 69, 145150.CrossRefGoogle Scholar
Artois, T., Fontaneto, D., Hummon, W.D., McInnes, S.J., Todaro, M.A., Sørensen, M.V. and Zullini, A. (2011) Ubiquity of microscopic animals? Evidence from the morphological approach in species identification. In Fontaneto, D. (ed.) Biogeography of microscopic organisms: Is everything small everywhere? Cambridge: Cambridge University Press, pp. 244283.CrossRefGoogle Scholar
Büntzow, M. (2011) Vergleichende gemeinschaftsanalytische und taxonomische Untersuchungen der Harpacticoidenfauna der Seeberge “Sedlo” und “Seine” (nördlicher Mittelatlantik) . Doctoral thesis. Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.Google Scholar
Caldeira, R.M.A., Groom, S., Miller, P., Pilgrim, D. and Nezlin, N.P. (2002) Sea-surface signatures of the island mass effect phenomena around Madeira Island, Northeast Atlantic. Remote Sensing of Environment 80, 336360.CrossRefGoogle Scholar
Caldeira, R.M.A. and Tomé, R. (2013) Wake response to an ocean-feedback mechanism: Madeira Island case study. Boundary-Layer Meteorology 148, 419436.CrossRefGoogle Scholar
Cecca, F. (2002) Palaeobiogeography of marine fossil invertebrates – concepts and methods. London: Taylor and Francis.Google Scholar
Christiansen, B. and Wolff, G. (eds) (2009) The oceanography, biochemistry and ecology of two NE Atlantic seamounts: OASIS. Deep-Sea Research II 56, 25792730.CrossRefGoogle Scholar
Clarke, K.R. and Gorley, R.N. (2006) PRIMER v6: user manual/tutorial. Plymouth: PRIMER-E.Google Scholar
Coull, B.C. (1988) Ecology of the marine meiofauna. In Higgins, R.P. and Thiel, H. (eds) Introduction to the study of meiofauna. Washington, DC: Smithsonian Institution Press, pp. 1838.Google Scholar
Delamare Deboutteville, C. (1960) Arenopontia subterranea Kunz (Copepoda) present a Madère. Vie et Milieu 11, 319.Google Scholar
Diepenbroek, M., Grobe, H. and Sieger, R. (2000) PanMap. Available at http://www.pangaea.de/Software/PanMap (accessed 23 January 2013).Google Scholar
Fiers, F. (1993) The laophontid genus Loureirophonte Jakobi, 1953 (Copepoda, Harpacticoida). Zoologische Mededelingen, Leiden 67, 207238.Google Scholar
Fischer, S. (1860) Beiträge zur Kenntniss der Entomostraceen. Abhandlungen der Königlich Bayerischen Akademie der Wissenschaften 8, 652656.Google Scholar
Gad, G. and Schminke, H.K. (2004) How important are seamounts for the dispersal of interstitial meiofauna? Archive of Fishery and Marine Research 51, 4354.Google Scholar
Geldmacher, J., Hoernle, K., Hanan, B.B., Blichert-Toft, J., Hauff, F., Gill, J.B. and Schmincke, H.-U. (2011) Hafnium isotopic variations in East Atlantic intraplate volcanism. Contributions to Mineralogy and Petrology 162, 2136.CrossRefGoogle Scholar
Geldmacher, J., Hoernle, K., Klügel, A., van den Bogaard, P. and Duggen, S. (2006a) A geochemical transect across a heterogeneous mantle upwelling: implications for the evolution of the Madeira hotspot in space and time. Lithos 90, 131144.CrossRefGoogle Scholar
Geldmacher, J., Hoernle, K., Klügel, A., van den Bogaard, P., Wombacher, F. and Berning, B. (2006b) Origin and geochemical evolution of the Madeira-Tore Rise (eastern North Atlantic). Journal of Geophysical Research 111, B09206. doi: 10.1029/2005JB003931.CrossRefGoogle Scholar
Geldmacher, J., Hoernle, K., van den Bogaard, P., Duggen, S. and Werner, R. (2005) New 40Ar/39Ar age and geochemical data from seamounts in the Canary and Madeira volcanic provinces: support for the mantle plume hypothesis. Earth and Planetary Science Letters 237, 85101.CrossRefGoogle Scholar
George, K.H. (2004) Description of two new species of Bodinia, a new genus incertae sedis in Argestidae Por, 1986 (Copepoda, Harpacticoida), with reflections on argestid colonization of the Great Meteor Seamount plateau. Organisms, Diversity and Evolution 4, 241264.CrossRefGoogle Scholar
George, K.H. (2013) Faunistic research on metazoan meiofauna from seamounts – a review. Meiofauna Marina 20, 132.Google Scholar
George, K.H. and Schminke, H.K. (2002) Harpacticoida (Crustacea, Copepoda) of the Great Meteor Seamount, with first conclusions as to the origin of the plateau fauna. Marine Biology 144, 887895.CrossRefGoogle Scholar
Gerlach, S.A. (1977) Means of meiofauna dispersal. Mikrofauna Meeresboden 61, 89103.Google Scholar
Giere, O. (2009) Meiobenthology: the microscopic motile fauna of aquatic sediments. Berlin: Springer Verlag.Google Scholar
Hammer, Ø., Harper, D.A.T. and Ryan, P.D. (2001) PAST: Paleontological Statistics software package for education and data analysis. Palaeontologia Electronica 4, 9 pp.Google Scholar
Hicks, G.R.F. and Coull, B.C. (1983) The ecology of marine meiobenthic harpacticoid copepods. Annual Review of Oceanography and Marine Biology 21, 67175.Google Scholar
Kihara, T., Corbisier, T., Gheller, P., Rocha, C. and Gómez, S. (2010) Meiofaunal Copepoda (Crustacea, Maxillopoda) from Todos os Santos Bay, Bahia, Brazil. 14th International Meoifauna Conference, Ghent, Belgium, 11–16 July 2010, Book of Abstracts, p. 140.Google Scholar
Koller, S. and George, K.H. (2011) Description of a new species of Zosime Boeck, 1872 (Copepoda: Harpacticoida: Zosimeidae) from the Great Meteor Seamount, representing one of the few eurybathic Harpacticoida among the distinct plateau and deep-sea assemblages. Meiofauna Marina 19, 109126.Google Scholar
Mata, J., Fonseca, P.E., Prada, S.N., Rodrigues, D., Martins, S., Ramalho, R., Madeira, J., Chachão, M., Silva, C.M. and Matias, M.J. (2013) O arquipélago da Madeira. – Geologia de Portugal. Escolar Editoria 2, 691746.Google Scholar
McIntyre, A.D. and Warwick, R.M. (1984) Meiofauna techniques. In Holme, N.A. and McIntyre, A.D. (eds) Methods for the study of marine benthos. Oxford: Blackwell, pp. 217244.Google Scholar
Morton, B. and Britton, J.C. (2000) The origins of the coastal and marine flora and fauna of the Azores. Oceanography and Marine Biology: An Annual Review 38, 1384.Google Scholar
NGDC/NOAA (1993) Global Relief Data on CD-ROM, World Data Center for Marine Geology and Geophysics, Boulder, courtesy Defense Mapping Agency. Available at http://www.ngdc.noaa.gov/mgg/fliers/93mgg01.html (accessed 23 January 2013).Google Scholar
Noodt, W. (1971) Ecology of Copepoda. Smithsonian Contributions to Zoology 76, 97102.Google Scholar
Packmor, J. (2013) Rhizotrichidae Por, 1986 (Copepoda: Harpacticoida) of Madeira and Porto Santo: description of two new species of the genus Tryphoema Monard, 1926. Marine Biodiversity 43, 341361.CrossRefGoogle Scholar
Packmor, J., Müller, F. and George, K.H. (2015) Oceanic islands and seamounts as staging posts for Copepoda Harpacticoida (Crustacea) – Shallow-water Paramesochridae Lang, 1944 from the North-East Atlantic Ocean, including the (re-)description of three species and one subspecies from the Madeiran Archipelago. Progress in Oceanography 131, 5981.CrossRefGoogle Scholar
Packmor, J. and Riedl, T. (2016) Records of Normanellidae Lang, 1944 (Copepoda, Harpacticoida) from Madeira Island support the hypothetical role of seamounts and oceanic islands as “stepping stones” in the dispersal of marine meiofauna. Marine Biodiversity. doi: 10.1007/s12526-016-0448-7.CrossRefGoogle Scholar
Pfeifer, D., Bäumer, H.-P., Dekker, R. and Schleier, U. (1998) Statistical tools for monitoring benthic communities. Senckenbergiana Maritima 29, 6376.CrossRefGoogle Scholar
Ramalho, R.S., Brum da Silveira, A., Fonseca, P.E., Madeira, J., Cosca, M., Cachão, M., Fonseca, M.M. and Prada, S.N. (2015) The emergence of volcanic oceanic islands on a slow-moving plate: the example of Madeira Island, NE Atlantic. Geochemistry, Geophysics, Geosystems 16, 522537.CrossRefGoogle Scholar
Rosen, B. (1983) Reef island staging posts and Noah's arks. Reef Encounter 1, 56.Google Scholar
Rosen, B. (1984) Reef coral biogeography and climate through the late Cainozoic: just islands in the sun or a critical pattern of islands? In Brenchley, P. (ed.) Fossils and climate. Chichester: John Wiley & Sons, pp. 201260.Google Scholar
Short, A.D. and Wright, L.D. (1983) Physical variability of sandy beaches. In Sandy beaches as ecosystems. New York, NY: Springer, pp. 133144.CrossRefGoogle Scholar
Sziemer, P. (2000) Eine kurze Naturgeschichte Madeiras. Funchal: Francisco Ribeiro & Filhos.Google Scholar
Thompson, I.C. (1888) Copepoda of Madeira and the Canary Islands, with descriptions of new genera and species. Journal of the Linnean Society of London (Zoology) 20, 145156.CrossRefGoogle Scholar
Wells, J.B.J. (2007) An annotated checklist and keys to the species of Copepoda Harpacticoida. Zootaxa 1568, 1872.CrossRefGoogle Scholar
Wienberg, C., Wintersteller, P., Beuck, L. and Hebbeln, D. (2013) Coral Patch seamount (NE Atlantic) – a sedimentological and megafaunal reconnaissance based on video and hydroacoustic surveys. Biogeosciences 10, 34213443.CrossRefGoogle Scholar