Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-29T09:19:30.563Z Has data issue: false hasContentIssue false

Molecular evidence for the first records and range extension of the great seahorse (Hippocampus kelloggi, Jordan & Snyder, 1901) in Quelimane, central coast of Mozambique

Published online by Cambridge University Press:  03 October 2023

Valdemiro Muhala*
Affiliation:
Instituto de Estudos Costeiros, Universidade Federal do Pará, PA, Bragança, Brazil Divisão de Agricultura, Instituto Superior Politécnico de Gaza, Divisão de Agricultura, Chókwè, Mozambique
Aurycéia Guimarães-Costa
Affiliation:
Instituto de Estudos Costeiros, Universidade Federal do Pará, PA, Bragança, Brazil
Isadola Eusébio Macate
Affiliation:
Instituto de Estudos Costeiros, Universidade Federal do Pará, PA, Bragança, Brazil Departamento de Ciências Agrárias e Ambientais, Universidade Estadual de Santa Cruz, BA, Ilheus, Brazil
Luciana Watanabe
Affiliation:
Instituto de Estudos Costeiros, Universidade Federal do Pará, PA, Bragança, Brazil
Rodrigo Petry Corrêa de Sousa
Affiliation:
Instituto de Estudos Costeiros, Universidade Federal do Pará, PA, Bragança, Brazil
Guilhermina Rocha
Affiliation:
Faculdade de Ciências Naturais e Matemática, Universidade Pedagógica, Quelimane, Mozambique
Jeferson Carneiro
Affiliation:
Instituto de Estudos Costeiros, Universidade Federal do Pará, PA, Bragança, Brazil
Marcelo Vallinoto
Affiliation:
Instituto de Estudos Costeiros, Universidade Federal do Pará, PA, Bragança, Brazil
Iracilda Sampaio
Affiliation:
Instituto de Estudos Costeiros, Universidade Federal do Pará, PA, Bragança, Brazil
*
Corresponding author: Valdemiro Muhala; Email: valdemiro.muhala@ispg.ac.mz

Abstract

The family Syngnathidae contains 52 seahorse species, which inhabit a range of habitats including coral reefs, seagrass beds and coastal estuaries. The seahorse Hippocampus kelloggi is among the most widely distributed species, occurring from Indo-West Pacific to East Africa. This species was included in the IUCN Red List in 2017 and is classified as vulnerable according to A2cd criteria. In this study, three specimens collected from the central coast of Mozambique were investigated and based on morphology and mitochondrial subunit of cytochrome oxidase I (COI) were identified as H. kelloggi. These results confirmed for the first time the extensive range of occurrence of H. kelloggi on the central coast of Mozambique.

Type
Marine Record
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of Marine Biological Association of the United Kingdom

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Behera, AK, Mahari, B and Mishira, AK (2023) First record of the great seahorse Hippocampus kelloggi Jordan & Snyder, 1901 (Actinopterygii: Syngnathiformes: Syngnathidae) from the northwestern coast of Bay of Bengal. Journal of Threatened Taxa 15, 2273722740.CrossRefGoogle Scholar
Chang, CH, Jang-Liaw, NH, Lin, YS, Fang, YC and Shao, KT (2013) Authenticating the use of dried seahorses in the traditional Chinese medicine market in Taiwan using molecular forensics. Journal of Food and Drug Analysis 1, 310316.CrossRefGoogle Scholar
Darriba, D, Taboada, GL, Doallo, R and Posada, D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772772.CrossRefGoogle ScholarPubMed
Eschmeyer, W, Van der Laan, R and Fricke, R (2023) Eschmeyer's catalog of fishes, 2023. https://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp/ (Acessed 21 June 2023).Google Scholar
Guimarães-Costa, AJ, Machado, FS, Oliveira, RR, Silva-Costa, V, Andrade, MC, Giarrizzo, T, Ulrich, P, Sampaio, I and Schneider, H (2019) Fish diversity of the largest deltaic formation in the Americas – a description of the fish fauna of the Parnaíba Delta using DNA barcoding. Scientific Reports 9, 18.CrossRefGoogle ScholarPubMed
Hall, TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98NT. Nucleic Acids Symposium 41, 9598.Google Scholar
Kloc, M (2023) Seahorse male pregnancy as a model system to study pregnancy, immune adaptations, and environmental effects. International Journal of Molecular Sciences 24, 9712.CrossRefGoogle Scholar
Koning, S and Hoeksema, BW (2021) Diversity of seahorse species (Hippocampus spp.) in the international aquarium trade. Diversity 13, 187.10.3390/d13050187CrossRefGoogle Scholar
Lai, M, Sun, S, Chen, J, Lou, Z, Qiu, F, Zhang, G and Cheng, R (2019) Complete mitochondrial genome sequence for the seahorse adulteration Hippocampus camelopardalis Bianconi 1854. Mitochondrial DNA B: Resource 4, 432433.CrossRefGoogle Scholar
Li, C, Olave, M, Hou, Y, Qin, G, Schneider, RF, Gao, Z, Tu, X, Wang, X, Qi, F, Nater, A, Kautt, AF, Wan, S, Zhang, Y, Liu, Y, Zhang, H, Zhang, B, Zhang, H, Qu, M, Liu, S, Chen, Z, Zhong, J, Zhang, H, Meng, L, Wang, K, Yin, J, Huang, L, Venkatesh, B, Meyer, A, Lu, X and Lin, Q (2021) Genome sequences reveal global dispersal routes and suggest convergent genetic adaptations in seahorse evolution. Nature Communication 12, 1094.CrossRefGoogle ScholarPubMed
Lourie, SA, Pollom, RA and Foster, SJ (2016) A global revision of the seahorses Hippocampus Rafinesque 1810 (Actinopterygii: Syngnathiformes): taxonomy and biogeography with recommendations for further research. Zootaxa 4146, 166.CrossRefGoogle ScholarPubMed
Lourie, SA, Vincent, AC and Hall, HJ (1999) Seahorses: an identification guide to the world's species and their conservation. Project Seahorse. London, p. 214.Google Scholar
Muhala, V, Guimarães-Costa, A, Macate, IE, Tembe, S, Mula, Y, Tóvela, E, Bessa-Silva, AR, Valinotto, M and Sampaio, I (2022) First record of mudskipper Boleophthalmus dussumieri (Gobiidae: Oxudercinae) on the coast of Mozambique and evidence of two putative lineages along its known distribution range. Journal of Fish Biology 102, 281286.CrossRefGoogle ScholarPubMed
Nguyen, LT, Schmidt, HA, Haeseler, A and Minh, BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32, 268274.CrossRefGoogle ScholarPubMed
Rambaut, A (2017) Fig Tree-version 1.4. 3, a graphical viewer of phylogenetic trees. Computer program distributed by the author, website. Available at http://tree.bio.ed.ac.uk/software/figtreeGoogle Scholar
Sanaye, SV, Khandeparker, R, Rayadurga, AS, Shivaramu, MS, Kankonkar, H, Narvekar, J and Gauthankar, M (2020) Morphological and molecular evidence for first records and range extension of the Japanese seahorse, Hippocampus mohnikei (Bleeker 1853) in a bay-estuarine system of Goa, central west coast of India. PLoS ONE 15, e0220420.CrossRefGoogle Scholar
Serite, CP, Ntshudisane, OK, Swart, E, Simbine, L, Jaime, GL and Teske, PR (2021) Limitations of DNA barcoding in determining the origin of smuggled seahorses and pipefishes. Forensic Science International: Animals and Environments 1, 100006.Google Scholar
Short, G, Claassens, L, Smith, R, De Brauwer, M, Hamilton, H, Stat, M and Harasti, D (2020) Hippocampus nalu, a new species of pygmy seahorse from South Africa, and the first record of a pygmy seahorse from the Indian Ocean (Teleostei, Syngnathidae). ZooKeys 934, 141156.CrossRefGoogle ScholarPubMed
Sreepada, RA, Desai, UM and Naik, S (2002) The plight of Indian sea horses: need for conservation and management. Current Science 82, 377378.Google Scholar
Tamura, K, Stecher, G and Kumar, S (2021) MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution 38, 30223027.CrossRefGoogle ScholarPubMed
Tang, Q, Deng, L, Luo, Q, Duan, Q, Wang, X and Zhang, R (2023) DNA barcoding of fish species diversity in Guizhou, China. Diversity 15, 203.CrossRefGoogle Scholar
Teske, PR, Hamilton, H, Palsboll, PJ, Choo, CK, Gabr, H, Lourie, SA, Santos, M, Sreepada, RA, Cherry, MI and Matthee, CA (2005) Molecular evidence for long-distance colonization in an Indo-Pacific seahorse lineage. Marine Ecology Progress Series 286, 249260.CrossRefGoogle Scholar
Thangaraj, M and Lipton, AP (2007) Occurrence of the Japanese seahorse Hippocampus mohnikei Bleeker 1854 from the Palk Bay coast of southeastern India. Journal of Fish Biology 70, 310312.CrossRefGoogle Scholar
Tsoupas, A, Papavasileiou, S, Minoudi, S, Gkagkavouzis, K, Petriki, O, Bobori, D, Sapounidis, A, Koutrakis, E, Leonardos, I, Karaiskou, N and Triantafyllidis, A (2022) DNA barcoding identification of Greek freshwater fishes. PLoS ONE. 17, e0263118.CrossRefGoogle ScholarPubMed
Vincent, AC, Foster, SJ and Koldewey, HJ (2011) Conservation and management of seahorses and other Syngnathidae. Journal of Fish Biology 78, 16811724.CrossRefGoogle ScholarPubMed
Wang, X, Zhong, H, Guo, J and Hou, F (2020) Morphology and molecular identification of the zoological origin of medicinal seahorses in Chinese herbal markets. Mitochondrial DNA Part A 31, 335345.CrossRefGoogle ScholarPubMed
Ward, RD, Zemlak, TS, Innes, BH, Last, PR and Hebert, PDN (2005) DNA Barcoding Australia's fish species. Philosophical Transactions of the Royal Society B: Biological Sciences 360, 18471857.CrossRefGoogle ScholarPubMed
Yogeshkumar, JS and Geetha, S (2012) A new species of Hippocampus montebelloensis (Family: Syngnathidae) from the southeast coast of India. International Journal of Plant Animal Environment Science 2, 5658.Google Scholar
Zhang, YY, Ryu, BM and Qian, ZJ (2017) A review-biology, aquaculture and medical use of seahorse, Hippocampus spp. Annual Research & Review in Biology 14, 112. https://doi.org/10.9734/ARRB/2017/34152CrossRefGoogle Scholar
Supplementary material: File

Muhala et al. supplementary material

Table S1

Download Muhala et al. supplementary material(File)
File 49.2 KB