Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T07:42:06.317Z Has data issue: false hasContentIssue false

Organic enrichment and structure of macrobenthic communities in the glacial Baker Fjord, Northern Patagonia, Chile

Published online by Cambridge University Press:  07 April 2011

Eduardo Quiroga*
Affiliation:
Pontificia Universidad Católica de Valparaíso (PUCV), Escuela de Ciencias del Mar, Casilla 1020, Valparaíso, Chile
Paula Ortiz
Affiliation:
Centro de Investigación en Ecosistemas de la Patagonia (CIEP), Bilbao 449, Coyhaique, Chile
Dieter Gerdes
Affiliation:
Alfred Wegener Institute for Polar and Marine Research, Columbusstrasse, D-27568 Bremerhaven, Germany
Brian Reid
Affiliation:
Centro de Investigación en Ecosistemas de la Patagonia (CIEP), Bilbao 449, Coyhaique, Chile
Soraya Villagran
Affiliation:
Centro de Investigación en Ecosistemas de la Patagonia (CIEP), Bilbao 449, Coyhaique, Chile
Renato Quiñones
Affiliation:
Centro de Investigación Oceanográfica en el Pacífico Sur-Oriental (COPAS), Universidad de Concepción, Casilla 160-C, Concepción, Chile
*
Correspondence should be addressed to: E. Quiroga, Pontificia Universidad Católica de Valparaíso (PUCV), Escuela de Ciencias del Mar, Casilla 1020, Valparaíso, Chile email: eduardo.quiroga@ucv.cl

Abstract

In this study we describe community parameters such as densities, biomasses, species composition, feeding modes and normalized biomass size-spectra (NBSS) of macrobenthic invertebrate communities from three stations located in the Baker Fjord obtained on four seasonal campaigns in 2008 and 2009. The macrobenthic communities were dominated by small-bodied polychaetes (Paraonidae, Capitellidae and Cirratulidae) characterized by continuous year-round breeding, short life-spans, and fast turnover rates, which in turn regulated the standing stock in the communities. Principal component analysis and multiple-regression analysis demonstrate the distribution of macrobenthic communities in the study area to be mainly controlled by few local environmental conditions. Macrofaunal densities, diversity and feeding modes were significantly correlated with the total organic carbon (TOC; R2 = 0.74; P < 0.001) and chlorophyll-a (Chl-a; R2 = 0.55; P < 0.05) content in the sediments. This study also suggests that feeding modes and NBSS can be used to detect and follow possible changes caused by natural perturbations such as glacial lake outburst floods or anthropogenic stressors associated with ecological impacts generated by the construction and operation of hydroelectric power stations in the Baker River.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aitken, A. and Fournier, J. (1993) Macrobenthos communities of Cambridge, Mcbeth and Itirbiling Fjords, Baffin Island, Northwest Territories, Canada. Artic 46, 6071.Google Scholar
Akoumianaki, I., Papaspyrou, S. and Nicolaidou, A. (2006) Dynamics of macrofaunal body size in a deltaic environment. Marine Ecology Progress Series 321, 5566.CrossRefGoogle Scholar
Baxter, R. (1977) Environmental effects of dams and impoundments. Annual Review of Ecology, Evolution, and Systematics 8, 255283.CrossRefGoogle Scholar
Brewin, P., Robert, P. and Barker, M. (2008) Deep-basin macrobenthos of Doubtful Sound, Fiordland, New Zealand. New Zealand Journal of Marine and Freshwater Research 41, 121.CrossRefGoogle Scholar
Buschmann, A.H., Riquelme, V.A., Hernández-González, M.C., Varela, D., Jiménez, J., Henríquez, L.A., Vergara, P.A., Guíñez, R. and Filún, L. (2006) A review of the impacts of salmon farming on marine coastal ecosystems in the southeast Pacific. ICES Journal of Marine Science 63, 13381345.CrossRefGoogle Scholar
Clarke, K.R. and Warwick, R.M. (1994) Changes in marine communities: an approach to statistical analysis and interpretation. 2nd edition. Plymouth: Primer-E, 144 pp.Google Scholar
Drgas, A., Radziejewska, T. and Warzocha, J. (1998) Biomass size spectra of near-shore shallow-water benthic communities in the Gulf of Gdansk (Southern Baltic Sea). Marine Ecology 19, 209228.CrossRefGoogle Scholar
Dussaillant, A., Benito, G., Buytaert, W., Carling, P., Meier, C. and Espinoza, F. (2009) Repeated glacial-lake outburst floods in Patagonia: an increasing hazard? Natural Hazards 10.1007/s11069-009-9479-8.Google Scholar
Ellingsen, K. (2002) Soft-sediment benthic biodiversity on the continental shelf in relation to environmental variability. Marine Ecology Progress Series 232, 1527.CrossRefGoogle Scholar
Field, J., Clarke, K. and Warwick, R. (1982) A practical strategy for analyzing multispecies distribution patterns. Marine Ecology Progress Series 8, 3752.CrossRefGoogle Scholar
Folk, R. (1974) Petrology of sedimentary rocks. Austin, TX: Hemphill Publishing.Google Scholar
Goodwin, P., Jorde, K., Meier, C. and Parra, O. (2006) Minimizing environmental impacts of hydropower development: transferring lessons from past projects to a proposed strategy for Chile. Journal of Hydroinformatics 8, 253270.CrossRefGoogle Scholar
González, H.E., Calderón, M.J., Castro, L., Clement, A., Cuevas, L.A., Daneri, G., Iriarte, J.L., Lizárraga, L., Martínez, R., Menschel, E., Silva, N., Carrasco, C., Valenzuela, C., Vargas, C.A. and Molinet, C. (2010) Primary production and plankton dynamics in the Reloncaví Fjord and the Interior Sea of Chiloé, Northern Patagonia, Chile. Marine Ecology Progress Series 402, 1330.CrossRefGoogle Scholar
Gutiérrez, D., Gallardo, V.A., Mayor, S., Neira, C., Vásquez, C., Sellanes, J., Rivas, M., Soto, A., Carrasco, F.D. and Baltazar, M. (2000) Effects of dissolved oxygen and fresh organic matter on macrofaunal bioturbation potential in sublittoral bottoms off central Chile during the 1997–1998 El Niño. Marine Ecology Progress Series 202, 8199.CrossRefGoogle Scholar
Holm-Hansen, O., Lorenzen, C.J., Holmes, R.W. and Strickland, J.D. (1965) Fluorometric determination of chlorophyll. Journal du Conseil International Pour l'Exploration de la Mer 30, 315.CrossRefGoogle Scholar
HidroAysén (2008) Estudio de impacto ambiental proyecto HidroAysén. Environmental Impact Assessment of the HidroAysén Project. available at http://www.e-seia.cl.Google Scholar
Iriarte, J.L., González, H., Liu, K., Rivas, C. and Valenzuela, C. (2007) Spatial and temporal variability of chlorophyll and primary productivity in surface waters of southern Chile (41.5–43°S). Estuarine, Coastal and Shelf Science 74, 471480.CrossRefGoogle Scholar
Jongman, R., Ter Braak, C. and van Tongeren, O. (1987) Data analysis in community and landscape ecology. Wageningen: PUDOC, 299 pp.Google Scholar
Jørgensen, B.B. (1996) Material flux in the sediment. In Jørgensen, B.B. and Richardson, K. (eds) Eutrophication in coastal marine ecosystems. Coastal and estuarine studies. Volume 52. Washington, DC: American Geophysical Union, pp. 115135.CrossRefGoogle Scholar
Kedra, M., Wlodarska-Kowalczuk, M. and Westlawski, J. (2010) Decadal change in macrobenthic soft-bottom community structure in a high Arctic fjord (Kongsfjorden, Svalbard). Polar Biology 33, 111.CrossRefGoogle Scholar
Luczak, C., Janquin, A.M. and Kupka, A. (1997) Simple standard procedure for the routine determination of organic matter in marine sediment. Hydrobiologia 345, 8794CrossRefGoogle Scholar
McLeod, R. and Wing, S. (2009) Strong pathways incorporation of terrestrial derived organic matter into benthic communities. Estuarine, Coastal and Shelf Science 82, 645653.CrossRefGoogle Scholar
McLeod, R., Wing, S. and Skilton, J. (2010) High incidence of invertebrate–chemoautotrophic symbioses in benthic communities of New Zealand fjords. Limnology and Oceanography 55, 20972106.CrossRefGoogle Scholar
Montani, S., Magni, P. and Abe, N. (2003) Seasonal and interannual patterns of intertidal microphytobenthos in combination with laboratory and areal production estimates. Marine Ecology Progress Series 249, 7991.CrossRefGoogle Scholar
Montiel, A., Gerdes, D., Hilbig, H. and Arntz, W. (2005) Polychaete assemblages on the Magellan and Weddell Sea shelves: a comparative ecological evaluation. Marine Ecology Progress Series 297, 189202.CrossRefGoogle Scholar
Mulsow, S., Krieger, Y. and Kennedy, R. (2006) Sediment profile imaging (SPI) and micro-electrode technologies in impact assessment studies: example from two fjords in Southern Chile used for fish farming. Journal of Marine Systems 62, 152–116.CrossRefGoogle Scholar
Olsgard, F., Brattegard, T. and Holthe, T. (2003) Polychaetes as surrogates for marine biodiversity: lower taxonomic resolution and indicators groups. Biodiversity and Conservation 12, 10331049.CrossRefGoogle Scholar
Pandian, T. (1980) Impact of dam-building on marine life. Helgoländer Meeresuntersuchungen 33, 415421.CrossRefGoogle Scholar
Pearson, T. and Rosenberg, R. (1978) Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanography and Marine Biology: an Annual Review 16, 229311.Google Scholar
Platt, T. and Denman, K. (1977) Organization in the pelagic ecosystem. Helgoländer Meeresuntersuchungen 30, 575581.CrossRefGoogle Scholar
Platt, T. and Denman, K. (1978) The structure of pelagic ecosystems. Rapports et Procès-Verbaux des Réunions du Conseil International pour l'Exploration de la Mer 173, 6065.Google Scholar
Quiroga, E., Quiñones, R., Palma, M., Sellanes, J., Gallardo, V., Gerdes, D. and Rowe, G. (2005) Biomass size-spectra of macrobenthic communities in the oxygen minimum zone off Chile. Estuarine, Coastal and Shelf Science 62, 217231.CrossRefGoogle Scholar
Rakocinski, C.F. and Zapfe, G.A. (2005) Macrobenthic process indicators of estuarine condition. In Bortone, S.A. (ed.) Estuarine indicators. Boca Raton, FL: CRC Press, pp. 315331.Google Scholar
Rowe, G. (1983) Biomass and production of the deep sea macrobenthos. In Rowe, G. (ed.) Deep sea biology. The sea. Volume 8. New York: John Wiley & Sons, pp 97121.Google Scholar
Saiz-Salinas, J. and Ramos, A. (1999) Biomass size-spectra of macrobenthic assemblages along water depth in Antarctica. Marine Ecology Progress Series 178, 221227.CrossRefGoogle Scholar
Saiz-Salinas, J. and González-Oreja, J. (2000) Stress in estuarine communities: lessons from the highly-impacted Bilbao estuary (Spain). Journal of Aquatic Ecosystems Stress and Recovery 7, 4355.CrossRefGoogle Scholar
Silva, N., Vargas, C. and Prego, R. (2010) Land–ocean distribution of allochthonous organic matter in the surface sediments of the Chiloé and Aysén interior seas (Chilean Northern Patagonia). Continental Shelf Research, doi:10.1016/j.csr.2010.09.009.Google Scholar
Somerfield, P., Cochrane, S., Dahle, S. and Pearson, T. (2006) Free-living nematodes and macrobenthos in a high-latitude glacial fjord. Journal of Experimental and Marine Biology and Ecology 330, 284296.CrossRefGoogle Scholar
Soto, D. and Norambuena, F. (2004) Evaluation of salmon farming effects on marine systems in the inner seas of southern Chile: a large-scale mensurative experiment. Journal of Applied Ichthyology 20, 493501.CrossRefGoogle Scholar
Sprules, W. and Munawar, N. (1986) Plankton size spectra in relation to ecosystem productivity, size and perturbation. Canadian Journal of Fisheries and Aquatic Sciences 43, 17891794.CrossRefGoogle Scholar
Strickland, J.D. and Parsons, T.R. (1968) Determination of reactive nitrite. In A Practical Handbook of Seawater Analysis. Bulletin of the Fisheries and Research Board of Canada 167, 7175.Google Scholar
Syvitski, J., Farrow, G., Atkinson, R., Moore, P. and Andrews, J. (1989) Baffin Island fjord macrobenthos: bottom communities and environmental significance. Artic 42, 232247.Google Scholar
Thatje, S. and Mutschke, E. (1999) Distribution of abundance, biomass, production and productivity of macrozoobenthos in the sub-Antarctic Magellan province (South America). Polar Biology 22, 3137.Google Scholar
Torres, R., Frangópulos, M., Hamamé, M., Montecino, V., Maureira, C., Pizarro, G., Reid, B., Valle-Levinson, A. and Blanco, J. (2010) Nitrate to silicate ratio variability and the composition of microphytoplankton blooms in the inner-fjord of Seno Ballena (Strait of Magellan, 54°S). Continental Shelf Research, doi:10.1016/j.csr. 2010.07.014Google Scholar
Urra, C. (2011) Diversidad molecular de cianobacterias en dos áreas con diferente grado de intervención antropógenica. Thesis for marine biotechnology engineer and aquaculture. Universidad de Concepción, 64 pp.Google Scholar
Wang, R., Yuan, L. and Zhang, L. (2010) Impacts of Spartina alterfiflora invasion on the benthic communities of salt marshes in the Yangtze Estuary, China. Ecological Engineering 36, 799806.CrossRefGoogle Scholar
Warwick, R.M. (1988) Analysis of community attributes of the macrobenthos of Frierfjord/Langesunfjord at taxonomic levels higher than species. Marine Ecology Progress Series 46, 167170.CrossRefGoogle Scholar
Webb, K., Barnes, D. and Gray, J. (2009) Benthic ecology of pockmarks in the Inner Oslofjord, Norway. Marine Ecology Progress Series 387, 1525.CrossRefGoogle Scholar
Wieking, G. and Kröncke, I. (2005) Is benthic trophic structure affected by food quality? The Dogger Bank example. Marine Biology 146, 387400.CrossRefGoogle Scholar
Wlodarska-Kowalczuk, M., Pearson, T. and Kendall, M. (2005) Benthic responses to chronic natural physical disturbance by glacial sedimentation in an Artic fjord. Marine Ecology Progress Series 303, 3141.CrossRefGoogle Scholar
Wlodarska-Kowalczuk, M., Szymelfening, M. and Zajaczkowski, M. (2007) Dynamic sedimentary environments of an Arctic glacier-fed river estuary (Adventfjorden, Svalbard). II: meio- and macrobenthic fauna. Estuarine, Coastal and Shelf Science 74, 274284.CrossRefGoogle Scholar
Zajaczkowski, M. and Wlodarska-Kowalczuk, M. (2007) Dynamic sedimentary environments of an Arctic glacier-fed river estuary (Adventfjorden, Svalbard). I: Flux, deposition and sediment dynamics. Estuarine, Coastal and Shelf Science 74, 285296.CrossRefGoogle Scholar
Zar, J. (1996) Biostatistical analysis. 4th edition. Upper Saddle River, NJ: Prentice-Hall.Google Scholar