Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-96qlp Total loading time: 0.382 Render date: 2022-12-03T09:39:10.188Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

The omnivorous collared peccary negates an insectivore-generated trophic cascade in Costa Rican wet tropical forest understorey

Published online by Cambridge University Press:  11 November 2013

Nicole L. Michel*
Affiliation:
School of Environment and Sustainability, University of Saskatchewan, 117 Science Place, Saskatoon, SK S7N 5C8, Canada Department of Ecology and Evolutionary Biology, Tulane University, 400 Boggs Hall, 6823 St. Charles Avenue, New Orleans, LA 70118, USA
Thomas W. Sherry
Affiliation:
Department of Ecology and Evolutionary Biology, Tulane University, 400 Boggs Hall, 6823 St. Charles Avenue, New Orleans, LA 70118, USA
Walter P. Carson
Affiliation:
Department of Biological Sciences, University of Pittsburgh, 154A Crawford Hall, Pittsburgh, PA 15260, USA
*
1Corresponding author. Email: Nicole.L.Michel1@gmail.com

Abstract:

Insectivorous birds and bats often protect plants through density- and trait-mediated cascades, but the degree to which insectivores reduce herbivorous arthropods and leaf damage varies among systems. Top-down interaction strength may be influenced by the biotic and abiotic context, including the presence of vegetation-disturbing animals. We tested two hypotheses: (1) insectivorous birds and bats initiate trophic cascades in tropical rain-forest understorey; and (2) the native, omnivorous collared peccary (Pecari tajacu) negates these cascades via non-trophic effects. We studied the top-down effects of birds and bats on understorey plants in north-eastern Costa Rica using 60 netted exclosures within and outside existing peccary exclosures. Excluding birds and bats increased total arthropod densities by half, both with and without peccaries. Bird/bat exclosures increased Diptera density by 28% and leaf damage by 24% without peccaries, consistent with a trophic cascade. However, bird/bat exclosures decreased Diptera density by 32% and leaf damage by 34% with peccaries, a negation of the trophic cascade. Excluding peccaries increased leaf damage by 43% on plants without birds and bats. This is the first study, to our knowledge, to demonstrate that the non-trophic activity of an omnivorous ungulate can reverse a trophic cascade.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

AGRAWAL, A. A., ACKERLY, D. D., ADLER, F., ARNOLD, A. E., CÁCERES, C., DOAK, D. F., POST, E., HUDSON, P. J., MARON, J., MOONEY, K. A., POWER, M., SCHEMSKE, D., STACHOWICZ, J., STRAUSS, S., TURNER, M. G. & WERNER, E. 2007. Filling key gaps in population and community ecology. Frontiers in Ecology and the Environment 5:145152.CrossRefGoogle Scholar
ANGIOSPERM PHYLOGENY GROUP. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society 161:105121.CrossRefGoogle Scholar
BEARD, K. H., ESCHTRUTH, A. K., VOGT, K. A., VOGT, D. J. & SCATENA, F. N. 2003. The effects of the frog Eleutherodactylus coqui on invertebrates and ecosystem processes at two scales in the Luquillo Experimental Forest, Puerto Rico. Journal of Tropical Ecology 19:607617.CrossRefGoogle Scholar
BECK, H. 2005. Seed predation and dispersal by peccaries throughout the Neotropics and its consequences: a review and synthesis. Pp. 77115 in Forget, P.-M., Lambert, J. E., Hulme, P. E. & Vander Wall, S. B. (eds.). Seed fate: predation, dispersal and seedling establishment. CABI, Wallingford.CrossRefGoogle Scholar
BOEGE, K. & MARQUIS, R. J. 2006. Plant quality and predation risk mediated by plant ontogeny: consequences for herbivores and plants. Oikos 115:559572.CrossRefGoogle Scholar
BORER, E. T., SEABLOOM, J. B., SHURNIN, K. E., ANDERSON, C. A., BLANCHETTER, B. & HALPERN, B. S. 2005. What determines the strength of a trophic cascade? Ecology 86:528537.CrossRefGoogle Scholar
COLEY, P. D. & BARONE, J. A. 1996. Herbivory and plant defenses in tropical forests. Annual Review of Ecology and Systematics 27:305335.CrossRefGoogle Scholar
CÔTÉ, S. D., ROONEY, T. P., TREMBLAY, J.-P., DUSSAULT, C. & WALLER, D. M. 2004. Ecological impacts of deer overabundance. Annual Review of Ecology Evolution and Systematics 35:113147.CrossRefGoogle Scholar
DIAL, R. & ROUGHGARDEN, J. 1995. Experimental removal of insectivores from rain forest canopy: direct and indirect effects. Ecology 76:18211834.CrossRefGoogle Scholar
DICK, E. J. 2004. Beyond ‘lognormal versus gamma’: discrimination among error distributions for generalized linear models. Fisheries Research 70:351366.CrossRefGoogle Scholar
DYER, L. A., CARSON, W. P. & LEIGH, E. G. 2012. Insect outbreaks in tropical forests: patterns, mechanisms, and consequences. Pp. 219245 in Barbosa, P., Letourneau, D. K. & Agrawal, A. A. (eds.). Insect outbreaks revisited. Wiley-Blackwell, Hoboken, NJ.CrossRefGoogle Scholar
GRUNER, D. S. 2004. Attenuation of top-down and bottom-up forces in a complex terrestrial community. Ecology 85:30103022.CrossRefGoogle Scholar
HARRISON, R. D. 2011. Emptying the forest: hunting and the extirpation of wildlife from tropical nature reserves. BioScience 61:919924.CrossRefGoogle Scholar
ICKES, K. 2001. Hyper-abundance of native wild pigs (Sus scrofa) in a lowland dipterocarp rain forest of peninsular Malaysia. Biotropica 33:682690.CrossRefGoogle Scholar
ICKES, K., DEWALT, S. J. & APPANAH, S. 2001. Effects of native pigs (Sus scrofa) on woody understorey vegetation in a Malaysian lowland rain forest. Journal of Tropical Ecology 17:191206.CrossRefGoogle Scholar
JOHNSON, M. D., KELLERMANN, J. L. & STERCHO, A. M. 2010. Pest reduction services by birds in shade and sun coffee Jamaica. Animal Conservation 13:140147.CrossRefGoogle Scholar
KALKA, M. B., SMITH, A. R. & KALKO, E. K. V. 2008. Bats limit arthropods and herbivory in a tropical forest. Science 320:71.CrossRefGoogle Scholar
KARBAN, R. & BALDWIN, I. T. 1997. Induced responses to herbivory. University of Chicago Press, Chicago, IL. 330 pp.CrossRefGoogle Scholar
KÉFI, S., BERLOW, E. L., WIETERS, E. A., NAVARRETE, S. A., PETCHEY, O. L., WOOD, S. A., BOIT, A., JOPPA, L. N., LAFFERTY, K. D., WILLIAMS, R. J., MARTINEZ, N. D., MENGE, B. A., BLANCHETTE, C. A., ILES, A. C. & BROSE, U. 2012. More than a meal . . . integrating non-feeding interactions into food webs. Ecology Letters 15:291300.CrossRefGoogle ScholarPubMed
KEUROGHLIAN, A., EATON, D. P. & LONGLAND, W. S. 2004. Area use by white-lipped and collared peccaries (Tayassu pecari and Tayassu tajacu) in a tropical forest fragment. Biological Conservation 120:411425.CrossRefGoogle Scholar
KUPREWICZ, E. K. 2013. Mammal abundances and seed traits control the seed dispersal and predation roles of terrestrial mammals in a Costa Rican forest. Biotropica 45:333342.CrossRefGoogle Scholar
LAMBERT, T. D., MALCOLM, J. R. & ZIMMERMAN, B. L. 2006. Amazonian small mammal abundances in relation to habitat structure and resource abundance. Journal of Mammalogy 87:766776.CrossRefGoogle Scholar
LITTELL, R. C., MILLIKEN, G. A., STROUP, W. W., WOLFINGER, R. D. & SCHABENBERGER, O. 2006. SAS for mixed models. (Second edition). SAS Institute, Cary, NC. 840 pp.Google Scholar
MÄNTYLÄ, E., KLEMOLA, T. & LAAKSONEN, T. 2011. Birds help plants: a meta-analysis of top-down trophic cascades caused by avian predators. Oecologia 165:143151.CrossRefGoogle ScholarPubMed
MARQUIS, R. J. & WHELAN, C. J. 1994. Insectivorous birds increase growth of white oak through consumption of leaf-chewing insects. Ecology 75:20072014.CrossRefGoogle Scholar
MICHEL, N. L. 2012. Mechanisms and consequences of avian understory insectivore population decline in fragmented Neotropical rainforest. Ph.D. thesis, Tulane University, New Orleans.Google Scholar
MICHEL, N. L. & SHERRY, T. W. 2012. Human-altered mesoherbivore densities and cascading effects on plant and animal communities in fragmented tropical forests. Pp. 177202 in Sudarshana, P., Nageswara-Rao, M. & Sonegi, J. R. (eds.). Tropical forests. InTech Open Access Publisher, New York, NY.Google Scholar
MOONEY, K. A., GRUNER, D. S., BARBER, N. A., VAN BAEL, S. A., PHILPOTT, S. M. & GREENBERG, R. 2010. Interactions among predators and the cascading effects of vertebrate insectivores on arthropod communities and plants. Proceedings of the National Academy of Sciences USA 107:73357340.CrossRefGoogle ScholarPubMed
MORRISON, E. B. & LINDELL, C. A. 2012. Birds and bats reduce insect biomass and leaf damage in tropical forest restoration sites. Ecological Applications 22:15261534.CrossRefGoogle ScholarPubMed
PETERS, S. L., MALCOLM, J. R. & ZIMMERMAN, B. L. 2006. Effects of selective logging on bat communities in the southeastern Amazon. Conservation Biology 20:14101421.CrossRefGoogle ScholarPubMed
PHILPOTT, S. M., SOONG, O., LOWENSTEIN, J. H., PULIDO, A. L., LOPEZ, D. T., FLYNN, D. F. B. & DECLERCK, F. 2009. Functional richness and ecosystem services: bird predation on arthropods in tropical agroecosystems. Ecological Applications 19:18581867.CrossRefGoogle ScholarPubMed
QUEENBOROUGH, S. A., METZ, M. R., WIEGAND, T. & VALENCIA, R. 2012. Palms, peccaries and perturbations: widespread effects of small-scale disturbance in tropical forest. BMC Ecology 12:3.CrossRefGoogle Scholar
REIDER, K. E., CARSON, W. P. & DONNELLY, M. A. 2013. Effects of collared peccary (Pecari tajacu) exclusion on leaf litter amphibians and reptiles in a Neotropical wet forest, Costa Rica. Biological Conservation 163:9098.CrossRefGoogle Scholar
RICHARDS, L. A. & WINDSOR, D. M. 2007. Seasonal variation of arthropod abundance in gaps and the understorey of a lowland moist forest in Panama. Journal of Tropical Ecology 23:169176.CrossRefGoogle Scholar
SANFORD, R. L., PAABY, P., LUVALL, J. C. & PHILLIPS, E. 1994. Climate, geomorphology, and aquatic systems. Pp. 1933 in McDade, L. A., Bawa, K. S., Hespenheide, H. A. & Hartshorn, G. S. (eds.). La Selva: ecology and natural history of a Neotropical rainforest. University of Chicago Press, Chicago, IL. 493 pp.Google Scholar
SAS INSTITUTE. 2009. SAS/STAT 9.2 user's guide. SAS Institute, Inc., Cary, NC. 7869 pp.Google Scholar
SCHMITZ, O. S., KRIVAN, V. & OVADIA, O. 2004. Trophic cascades: the primacy of trait-mediated indirect interactions. Ecology Letters 7:153163.CrossRefGoogle Scholar
SCHNITZER, S. A., DALLING, J. W. & CARSON, W. P. 2000. The impact of lianas on tree regeneration in tropical forest canopy gaps: evidence for an alternative pathway of gap-phase regeneration. Journal of Ecology 8:655666.CrossRefGoogle Scholar
SHIPLEY, B. 2009. Confirmatory path analysis in a generalized multilevel context. Ecology 90:363368.CrossRefGoogle Scholar
SODHI, N. S., ŞEKERCIOĞLU, Ç. H., BARLOW, J. & ROBINSON, S. K. 2011. Conservation of tropical birds. Wiley-Blackwell, Hoboken, NJ. 300 pp.CrossRefGoogle Scholar
STEWART, A. J. A. 2001. The impact of deer on lowland woodland invertebrates: a review of the evidence and priorities for future research. Forestry 74:259270.CrossRefGoogle Scholar
TERBORGH, J. W. & ESTES, J. A. 2010. Trophic cascades: predators, prey, and the changing dynamics of nature. Island Press, Washington, DC. 488 pp.Google Scholar
TIMM, R. M. 1994. The mammal fauna. Pp. 229237 in McDade, L. A., Bawa, K. S., Hespenheide, H. A. & Hartshorn, G. S. (eds.). La Selva: ecology and natural history of a Neotropical rainforest. University of Chicago Press, Chicago, IL.Google Scholar
TRIPLEHORN, C. A. & JOHNSON, N. F. 2004. Borror and DeLong's introduction to the study of insects. (Seventh edition). Brooks Cole, Pacific Grove, CA. 888 pp.Google Scholar
VAN BAEL, S. A. & BRAWN, J. D. 2005. The direct and indirect effects of insectivory by birds in two contrasting Neotropical forests. Oecologia 143:106116.CrossRefGoogle ScholarPubMed
VAN BAEL, S. A., BRAWN, J. D. & ROBINSON, S. K. 2003. Birds defend trees from herbivores in a Neotropical forest canopy. Proceedings of the National Academy of Sciences USA 100:83048307.CrossRefGoogle Scholar
VANCE-CHALCRAFT, H. D., ROSENHEIM, J. A., VONESH, J. R., OSENBERG, C. W. & SIH, A. 2007. The influence of intraguild predation on prey suppression and prey release: a meta-analysis. Ecology 88:26892696.CrossRefGoogle ScholarPubMed
WHITFIELD, S. M., BELL, K. E., PHILIPPI, T., SASA, M., BOLAÑOS, F., CHAVES, G., SAVAGE, J. M. & DONNELLY, M. A. 2007. Amphibian and reptile declines over 35 years at La Selva, Costa Rica. Proceedings of the National Academy of Sciences USA 104:83528356.CrossRefGoogle Scholar
WILLIAMS-GUILLÉN, K., PERFECTO, I. & VANDERMEER, J. 2008. Bats limit insects in a Neotropical agroforestry system. Science 320:70.CrossRefGoogle Scholar
WRIGHT, S. J., ZEBALLOS, H., DOMÍNGUEZ, I., GALLARDO, M. M., MORENO, M. C. & IBÁÑEZ, R. 2000. Poachers alter mammal abundance, seed dispersal, and seed predation in a Neotropical forest. Conservation Biology 14:227239.CrossRefGoogle Scholar
14
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The omnivorous collared peccary negates an insectivore-generated trophic cascade in Costa Rican wet tropical forest understorey
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

The omnivorous collared peccary negates an insectivore-generated trophic cascade in Costa Rican wet tropical forest understorey
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

The omnivorous collared peccary negates an insectivore-generated trophic cascade in Costa Rican wet tropical forest understorey
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *