Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-rz424 Total loading time: 0.549 Render date: 2021-02-28T22:38:58.582Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Stable carbon and oxygen isotopes in tree rings show physiological responses of Pericopsis elata to precipitation in the Congo Basin

Published online by Cambridge University Press:  12 April 2016

Daniele Colombaroli
Affiliation:
Institute of Plant Sciences and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Paolo Cherubini
Affiliation:
WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
Maaike De Ridder
Affiliation:
Wood Biology Service, Royal Museum for Central Africa, Tervuren, Belgium Laboratory for Wood Technology, Ghent University, Ghent, Belgium
Matthias Saurer
Affiliation:
Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
Benjamin Toirambe
Affiliation:
Wood Biology Service, Royal Museum for Central Africa, Tervuren, Belgium
Noëmi Zweifel
Affiliation:
Institute of Plant Sciences and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Hans Beeckman
Affiliation:
Wood Biology Service, Royal Museum for Central Africa, Tervuren, Belgium
Corresponding

Abstract:

In equatorial regions, where tree rings are less distinct or even absent, the response of forests to high-frequency climate variability is poorly understood. We measured stable carbon and oxygen isotopes in anatomically distinct, annual growth rings of four Pericopsis elata trees from a plantation in the Congo Basin, to assess their sensitivity to recorded changes in precipitation over the last 50 y. Our results suggest that oxygen isotopes have high common signal strength (EPS = 0.74), and respond to multi-annual precipitation variability at the regional scale, with low δ18O values (28–29‰) during wetter conditions (1960–1970). Conversely, δ13C are mostly related to growth variation, which in a light-demanding species are driven by competition for light. Differences in δ13C values between fast- and slow-growing trees (c. 2‰), result in low common signal strength (EPS = 0.37) and are driven by micro-site conditions rather than by climate. This study highlights the potential for understanding the causes of growth variation in P. elata as well as past hydroclimatic changes, in a climatically complex region characterized by a bimodal distribution in precipitation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below.

References

AMPOFO, S. 1972. The problem of natural regeneration of Pericopsis elata (Harms) Van Meeuwen in Ghana. Journal of Agricultural Science 5:241245.Google Scholar
ARAGUAS-ARAGUAS, L., FROEHLICH, K. & ROZANSKI, K. 2000. Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture. Hydrological Processes 14:13411355.3.0.CO;2-Z>CrossRefGoogle Scholar
BARBOUR, M. M. 2007. Stable oxygen isotope composition of plant tissue: a review. Functional Plant Biology 34:8394.CrossRefGoogle Scholar
BOETTGER, T., HAUPT, M., KNOELLER, K., WEISE, S. M., WATERHOUSE, J. S., RINNE, K. T., LOADER, N. J., SONNINEN, E., JUNGNER, H., MASSON-DELMOTTE, V., STIEVENARD, M., GUILLEMIN, M.-T., PIERRE, M., PAZDUR, A., LEUENBERGER, M., FILOT, M., SAURER, M., REYNOLDS, C. E., HELLE, G. & SCHLESER, G. H. 2007. Wood cellulose preparation methods and mass spectrometric analyses of delta C-13, delta O-18, and nonexchangeable delta H-2 values in cellulose, sugar, and starch: an interlaboratory comparison. Analytical Chemistry 79:46034612.CrossRefGoogle Scholar
BOURLAND, N., KOUADIO, Y. L., FETEKE, F., LEJEUNE, P. & DOUCET, J.-L. 2012. Ecology and management of Pericopsis elata (Harms) Meeuwen (Fabaceae) populations. Biotechnologie, Agronomie, Société et Environnement 16:486498.Google Scholar
BOURLAND, N., KOUADIO, Y. L., LEJEUNE, P., SONKE, B., PHILIPPART, J., DAINOU, K., FETEKE, F. & DOUCET, J.-L. 2013. Ecology of Pericopsis elata (Fabaceae), an endangered timber species in Southeastern Cameroon. Biotropica 45:272.Google Scholar
BRIENEN, R., HELLE, G., PONS, T. L., GUYOT, J.-L. & GLOOR, M. 2012. Oxygen isotopes in tree rings are a good proxy for Amazon precipitation and El Nino-Southern Oscillation variability. Proceedings of the National Academy of Sciences USA 109:1695716962.CrossRefGoogle ScholarPubMed
BRIFFA, K. R. & JONES, P. D. 1990. Basic chronology statistics and assessment. Pp. 137152 in Cook, E. & Kairiukstis, L. A. (eds.). Methods of dendrochronology: applications in the environmental sciences. Kluwer Academic Publishers, Dordrecht.Google Scholar
BRNCIC, T. M., WILLIS, K. J., HARRIS, D. J. & WASHINGTON, R. 2007. Culture or climate? The relative influences of past processes on the composition of the lowland Congo rainforest. Philosophical Transactions of the Royal Society B–Biological Sciences 362:229242.CrossRefGoogle ScholarPubMed
CAMBERLIN, P., MORON, V., OKOOLA, R., PHILIPPON, N. & GITAU, W. 2009. Components of rainy seasons' variability in Equatorial East Africa: onset, cessation, rainfall frequency and intensity. Theoretical and Applied Climatology 98:237249.CrossRefGoogle Scholar
COLOMBAROLI, D., SSEMMANDA, I., GELORINI, V. & VERSCHUREN, D. 2014. Contrasting long-term records of biomass burning in wet and dry savannas of equatorial East Africa. Global Change Biology 20:29032914.CrossRefGoogle ScholarPubMed
COPLEN, T. B. 1995. Discontinuance of SMOW and PDB. Nature 375:285.CrossRefGoogle Scholar
DANSGAARD, W. 1964. Stable isotopes in precipitation. Tellus 16:436468.CrossRefGoogle Scholar
DE RIDDER, M., VAN DEN BULCKE, J., VAN ACKER, J. & BEECKMAN, H. 2013a. Tree-ring analysis of an African long-lived pioneer species as a tool for sustainable forest management. Forest Ecology and Management 304:417426.CrossRefGoogle Scholar
DE RIDDER, M., TROUET, V., VAN DEN BULCKE, J., HUBAU, W., VAN ACKER, J. & BEECKMAN, H. 2013b. A tree-ring based comparison of Terminalia superba climate-growth relationships in West and Central Africa. Trees–Structure and Function 27:12251238.CrossRefGoogle Scholar
DE RIDDER, M., TOIRAMBE, B., VAN DEN BULCKE, J., BOURLAND, N., VAN ACKER, J. & BEECKMAN, H. 2014. Dendrochronological potential in a semi-deciduous rainforest: the case of Pericopsis elata in Central Africa. Forests 5:30873106.CrossRefGoogle Scholar
DETWILER, R. P. & HALL, C. A. S. 1988. Tropical forests and the global carbon-cycle. Science 239:4247.CrossRefGoogle ScholarPubMed
DOUGLAS, A. E. 1941. Crossdating in dendrochronology. Journal of Forestry 39:825831.Google Scholar
EPSTEIN, S., KRISHNAMURTHY, R. V., OESCHGER, H., EDDY, J. A. & PECKER, J.-C. 1990. Environmental information in the isotopic record in trees. Philosophical Transactions of the Royal Society of London 330:427439.CrossRefGoogle Scholar
EVANS, M. N. & SCHRAG, D. P. 2004. A stable isotope-based approach to tropical dendroclimatology. Geochimica et Cosmochimica Acta 68:32953305.CrossRefGoogle Scholar
FARNSWORTH, A., WHITE, E., WILLIAMS, C. J. R., BLACK, E. & KNIVETON, D. R. 2011. Understanding the large scale driving mechanisms of rainfall variability over Central Africa. African Climate and Climate Change: Physical, Social and Political Perspectives 43:101122.CrossRefGoogle Scholar
FICHTLER, E., HELLE, G. & WORBES, M. 2010. Stable-carbon isotope time series from tropical tree rings indicate a precipitation signal. Tree-Ring Research 66:3549.CrossRefGoogle Scholar
FRANCEY, R. J. & FARQUHAR, G. D. 1982. An explanation of c-13/c-12 variations in tree rings. Nature 297:2831.CrossRefGoogle Scholar
FRANK, D., ESPER, J. & COOK, E. R. 2007. Adjustment for proxy number and coherence in a large-scale temperature reconstruction. Geophysical Research Letters 34:15.CrossRefGoogle Scholar
GAT, J. R. & MATSUI, E. 1991. Atmospheric water-balance in the Amazon Basin – an isotopic evapotranspiration model. Journal of Geophysical Research – Atmospheres 96:1317913188.CrossRefGoogle Scholar
GEBREKIRSTOS, A., WORBES, M., TEKETAY, D., FETENE, M. & MITLOEHNER, R. 2009. Stable carbon isotope ratios in tree rings of co-occurring species from semi-arid tropics in Africa: patterns and climatic signals. Global and Planetary Change 66:253260.CrossRefGoogle Scholar
GEBREKIRSTOS, A., BRAEUNING, A., SASS-KLASSEN, U. & MBOW, C. 2014. Opportunities and applications of dendrochronology in Africa. Current Opinion in Environmental Sustainability 6:4853.CrossRefGoogle Scholar
HAGOS, S. M. & COOK, K. H. 2008. Ocean warming and late-twentieth-century Sahel drought and recovery. Journal of Climate 21:37973814.CrossRefGoogle Scholar
HAWTHORNE, W. D. 1995. Ecological profiles of Ghanaian forest trees. Tropical Forestry Paper 29. Oxford Forestry Institute, Oxford.Google Scholar
HELLE, G. & SCHLESER, G. H. 2004. Beyond CO2-fixation by Rubisco – an interpretation of C-13/C-12 variations in tree rings from novel intra-seasonal studies on broad-leaf trees. Plant Cell and Environment 27:367380.CrossRefGoogle Scholar
IPCC. 2013. Climate change 2013: The Physical Science Basis Contribution of Working Group I. The fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.Google Scholar
KAHINDO MUHONGYA, J. M. 2011. Potentiel en produits forestiers autres que le bois d'oeuvre dans les formations forestières de la région de Kisangani. PhD thesis, University of Kisangani, 342 pp.Google Scholar
KRESS, A., SAURER, M., SIEGWOLF, R. T. W., FRANK, D. C., ESPER, J. & BUGMANN, H. 2010. A 350 year drought reconstruction from Alpine tree ring stable isotopes. Global Biogeochemical Cycles 24:GB2011.Google Scholar
KYEREH, B., SWAINE, M. D. & THOMPSON, J. 1999. Effect of light on the germination of forest trees in Ghana. Journal of Ecology 87:772783.CrossRefGoogle Scholar
LEAVITT, W. S. & LONG, A. 1984. Sampling strategy for stable carbon isotope analysis of tree rings in pine. Nature 311:145147.CrossRefGoogle Scholar
LEVIN, N. E., ZIPSER, E. J. & CERLING, T. E. 2009. Isotopic composition of waters from Ethiopia and Kenya: insights into moisture sources for eastern Africa. Journal of Geophysical Research – Atmospheres 114: D23306.CrossRefGoogle Scholar
LOADER, N. J., YOUNG, G. H. F., MCCARROLL, D. & WILSON, R. J. S. 2013. Quantifying uncertainty in isotope dendroclimatology. Holocene 23:12211226.CrossRefGoogle Scholar
LOMBA-BOSOMBO, C. 2002. Systemes d'agregation et structures diametriques en fonction des temperaments de quelques essences dans les dispositifs permanents de Yoko et Biaro (Ubundu, Province Orientale, R. D. Congo). Unpubl. PhD thesis. Kisangani University, Kisangani.Google Scholar
MAYAUX, P., PEKEL, J.-F., DESDEE, B., DONNAY, F., LUPI, A., ACHARD, F., CLERICI, M., BODART, C., BRINK, A., NASI, R. & BELWARD, A. 2013. State and evolution of the African rainforests between 1990 and 2010. Philosophical Transactions of the Royal Society B – Biological Sciences 368:20120300.CrossRefGoogle ScholarPubMed
MBOW, C., CHHIN, S., SAMBOU, B. & SKOLE, D. 2013. Potential of dendrochronology to assess annual rates of biomass productivity in savanna trees of West Africa. Dendrochronologia 31:4151.CrossRefGoogle Scholar
MCCARROLL, D. & LOADER, N. J. 2004. Stable isotopes in tree rings. Quaternary Science Reviews 23:771801.CrossRefGoogle Scholar
MCCARROLL, D. & PAWELLEK, F. 2001. Stable carbon isotope ratios of Pinus sylvestris from northern Finland and the potential for extracting a climate signal from long Fennoscandian chronologies. Holocene 11:517526.CrossRefGoogle Scholar
MCCARROLL, D., GAGEN, M., LOADER, N., ROBERTSON, I., ANCHUKAITIS, K., LOS, S., YOUNG, G., JALKANEN, R., KIRCHHEFER, A. & WATERHOUSE, J. 2010. Correction of tree ring stable carbon isotope chronologies for changes in the carbon dioxide content of the atmosphere. Geochimica et Cosmochimica Acta 74:3040.CrossRefGoogle Scholar
NICHOLSON, S. E. 2000. The nature of rainfall variability over Africa on time scales of decades to millennia. Global and Planetary Change 26:137158.CrossRefGoogle Scholar
OSLISLY, R., WHITE, L., BENTALEB, I., FAVIER, C., FONTUGNE, M., GILLET, J.-F. & SEBAG, D. 2013. Climatic and cultural changes in the west Congo Basin forests over the past 5000 years. Philosophical Transactions of the Royal Society B – Biological Sciences 368:20120304.CrossRefGoogle ScholarPubMed
OTTO, F. E. L., JONES, R. G., HALLADAY, K. & ALLEN, M. R. 2013. Attribution of changes in precipitation patterns in African rainforests. Philosophical Transactions of the Royal Society B – Biological Sciences 368:20120299.CrossRefGoogle ScholarPubMed
POUSSART, P. M., MYNENI, S. C. B. & LANZIROTTI, A. 2006. Tropical dendrochemistry: a novel approach to estimate age and growth from ringless trees. Geophysical Research Letters 33:L17711.CrossRefGoogle Scholar
REYNOLDS-HENNE, C. E., SIEGWOLF, R. T. W., TREYDTE, K. S., ESPER, J., HENNE, S. & SAURER, M. 2007. Temporal stability of climate-isotope relationships in tree rings of oak and pine (Ticino, Switzerland). Global Biogeochemical Cycles 21:GB4009.CrossRefGoogle Scholar
ROBERTSON, I., ROLFE, J., SWITSUR, V. R., CARTER, A. H. C., HALL, M. A., BARKER, A. C. & WATERHOUSE, J. S. 1997. Signal strength and climate relationships in C-13/C-12 ratios of tree ring cellulose from oak in southwest Finland. Geophysical Research Letters 24:14871490.CrossRefGoogle Scholar
RODEN, J. S., LIN, G. G. & EHLERINGER, J. R. 2000. A mechanistic model for interpretation of hydrogen and oxygen isotope ratios in tree-ring cellulose. Geochimica et Cosmochimica Acta 64:2135.CrossRefGoogle Scholar
ROZANSKI, K., ARAGUAS-ARAGUAS, L. & GONFIANTINI, R. 1996. Isotope patterns of precipitation in the East African region. Pp. 7993 in Johnson, T. C. & Odada, E. O. (eds.). The limnology, climatology and paleoclimatology of the East African Lakes. Gordon and Breach, Amsterdam.Google Scholar
ROZENDAAL, D. M. A. & ZUIDEMA, P. A. 2011. Dendroecology in the tropics: a review. Trees – Structure and Function 25:316.CrossRefGoogle Scholar
RUSSELL, J. M. & JOHNSON, T. C. 2005. A high-resolution geochemical record from Lake Edward, Uganda Congo and the timing and causes of tropical African drought during the late Holocene. Quaternary Science Reviews 24:13751389.CrossRefGoogle Scholar
SAMBA, G. & NGANGA, D. 2012. Rainfall variability in Congo-Brazzaville: 1932–2007. International Journal of Climatology 32:854873.CrossRefGoogle Scholar
SAURER, M. & SIEGWOLF, R. 2004. Pyrolysis techniques for oxygen isotope analysis of cellulose. Pp. 497508 in De Groot, P. A. (ed.). Handbook of stable isotope analytical techniques. Elsevier, New York.CrossRefGoogle Scholar
SAURER, M., SIEGENTHALER, U. & SCHWEINGRUBER, F. 1995. The climate-carbon isotope relationship in tree rings and the significance of site conditions. Tellus Series B – Chemical and Physical Meteorology 47:320330.CrossRefGoogle Scholar
SAURER, M., BORELLA, S. & LEUENBERGER, M. 1997. Delta O-18 of tree rings of beech (Fagus silvatica) as a record of delta O-18 of the growing season precipitation. Tellus Series B – Chemical and Physical Meteorology 49:8092.CrossRefGoogle Scholar
SCHLESER, G. H., HELLE, G., LUCKE, A. & VOS, H. 1999. Isotope signals as climate proxies: the role of transfer functions in the study of terrestrial archives. Quaternary Science Reviews 18:927943.CrossRefGoogle Scholar
VAN DER SLEEN, P., GROENENDIJK, P. & ZUIDEMA, P. A. 2015. Tree-ring delta O-18 in African mahogany (Entandrophragma utile) records regional precipitation and can be used for climate reconstructions. Global and Planetary Change 127:5866.CrossRefGoogle Scholar
VAN OLDENBORGH, G. J. & BURGERS, G. 2005. Searching for decadal variations in ENSO precipitation teleconnections. Geophysical Research Letters 32:L15701.CrossRefGoogle Scholar
VEENENDAAL, E. M., SWAINE, M. D., LECHA, R. T., WALSH, M. F., ABEBRESE, I. K. & OWUSUAFRIYIE, K. 1996. Responses of West African forest tree seedlings to irradiance and soil fertility. Functional Ecology 10:501511.CrossRefGoogle Scholar
VERSCHUREN, D., DAMSTÉ, J. S. S., MOERNAUT, J., KRISTEN, I., BLAAUW, M., FAGOT, M., HAUG, G. H. & CHALLACEA PROJECT MEMBERS. 2009. Half-precessional dynamics of monsoon rainfall near the East African Equator. Nature 462:637641.CrossRefGoogle ScholarPubMed
VIVIEN, J. & FAURE, J. J. 2011. Arbres des forêts denses d'Afrique centrale. Editions Nguila-Kerou, Clohars-Carnoët. 945 pp.Google Scholar
WERNER, C. & MAGUAS, C. 2010. Carbon isotope discrimination as a tracer of functional traits in a Mediterranean macchia plant community. Functional Plant Biology 37:467477.CrossRefGoogle Scholar
WEST, A. G., MIDGLEY, J. J. & BOND, W. J. 2001. The evaluation of delta C-13 isotopes of trees to determine past regeneration environments. Forest Ecology and Management 147:139149.CrossRefGoogle Scholar
WIGLEY, T. M. L., BRIFFA, K. R. & JONES, P. D. 1984. On the average value of correlated time-series, with applications in dendroclimatology and hydrometeorology. Journal of Climate and Applied Meteorology 23:201213.2.0.CO;2>CrossRefGoogle Scholar
WILLIAMS, A. P., FUNK, C., MICHAELSEN, J., RAUSCHER, S. A., ROBERTSON, I., WILS, T. H. G., KOPROWSKI, M., ESHETU, Z. & LOADER, N. J. 2012. Recent summer precipitation trends in the Greater Horn of Africa and the emerging role of Indian Ocean sea surface temperature. Climate Dynamics 39:23072328.CrossRefGoogle Scholar
WILS, T. H. G., ROBERTSON, I., ESHETU, Z., KOPROWSKI, M., SASS-KLAASSEN, U. G. W., TOUCHAN, R. & LOADER, N. J. 2010. Towards a reconstruction of Blue Nile baseflow from Ethiopian tree rings. Holocene 20:837848.CrossRefGoogle Scholar
WORBES, M., STASCHEL, R., ROLOFF, A. & JUNK, W. J. 2003. Tree ring analysis reveals age structure, dynamics and wood production of a natural forest stand in Cameroon. Forest Ecology and Management 173:105123.CrossRefGoogle Scholar
ZELAZOWSKI, P., MALHI, Y., HUNTINGFORD, C., SITCH, S. & FISHER, J. B. 2011. Changes in the potential distribution of humid tropical forests on a warmer planet. Philosophical Transactions of the Royal Society A – Mathematical Physical and Engineering Sciences 369:137160.CrossRefGoogle ScholarPubMed

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 14
Total number of PDF views: 145 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 28th February 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Stable carbon and oxygen isotopes in tree rings show physiological responses of Pericopsis elata to precipitation in the Congo Basin
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Stable carbon and oxygen isotopes in tree rings show physiological responses of Pericopsis elata to precipitation in the Congo Basin
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Stable carbon and oxygen isotopes in tree rings show physiological responses of Pericopsis elata to precipitation in the Congo Basin
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *