Skip to main content Accessibility help
×
Home
Hostname: page-component-7ccbd9845f-vmftn Total loading time: 0.53 Render date: 2023-01-30T13:47:59.170Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Structure and floristic composition of a tropical evergreen forest in south-west India

Published online by Cambridge University Press:  10 July 2009

Jean-Pierre Pascal
Affiliation:
Laboratoire de Biométrie, 43, av. du 11 Novembre 1918, Université de Lyon I, 69622 Villeurbanne, France
Raphael Pelissier
Affiliation:
Institut Français de Pondichéry, P. O. Box 33, Pondicherry 605001, India

Abstract

A permanent plot of 28 ha was established in a dense wet evergreen forest in the Western Ghats of India to study the functioning of the ecosystem. Since April 1990, 1981 trees of ≥30 cm gbh have been enumerated in a systematic sampling of five strips totalling 3.12 ha. This paper describes the main structural and floristic characteristics of the plot.

The density (635 trees ≥30 cm gbh per hectare) and basal area (39.7 m2 ha−1) are high. Despite the high diversity (Simpson's D = 0.92 and Shannon's H' = 4.56), four species are distinctly, dominant in terms of an importance value index (relative density + relative basal area). Each of these four species occupies a different layer in the ecosystem: Humboldtia brunonis Wall. (Fabaceae) dominates the undergrowth, Myristica dactyloïdes Gaertn. (Myristicaceae) the intermediate strata, Valeria indica L. (Dipterocarpaceae) the higher canopy level and Dipterocarpus indicus Bedd. (Dipterocarpaceae) the emergents. This pronounced species hierarchy is one of the most important characteristics of the evergreen forests of the Western Ghats. The two dipterocarps account for 20.1% of the total number of trees and contribute 40.9% to the total basal area. This formation can, therefore, be considered as the westernmost lowland dipterocarp forest of Asia.

Analysis of the spatial variations in the floristic composition and in the structure of the main species populations shows that two kinds of mature phases can be identified: where the topography is raised and gently sloping, the vertical structure of the stand is discontinuous, with Dipterocarpus indicus and Vateria indica forming an emergent layer above a dense undergrowth; on slopes, the stand is lower, vertically continuous and saturated with Valeria indica and Myristica dactyloïdes. The link between the structure of the stand and dynamic processes is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ACI. 1991. 4e DIMENSION® 4.2.2. Analyse Conseils Informations, Paris.Google Scholar
Ashton, P. M. S. 1992. Some measurements of the microclimate within a Sri Lankan tropical rain forest. Agricutural and Forest Meteorology 59:217235.Google Scholar
Ashton, P. S. & Hall, P. 1992. Comparisons of structure among mixed dipterocarp forests of north-western Borneo. Journal of Ecology 80:459481.CrossRefGoogle Scholar
Basnet, K. 1992. Effect of topography on the pattern of trees in Tabonuco (Dacryodes excelsa) dominated rain forest of Puerto Rico. Biotropica 24:3142.CrossRefGoogle Scholar
Bossel, H. & Krieger, H. 1991. Simulation model of natural tropical forest dynamics. Ecological Modelling 59:3771.CrossRefGoogle Scholar
Bourgeon, G. 1989. Explanatory booklet on the reconnaissance soil map of forest area (Western Karnataka and Goa). Institut Français de Pondichéry, Publications du Département d'Ecologie, Hors série 20. 204 pp. + 1 map.Google Scholar
Buchy, M. 1990. Colonial forest exploitation in the Western Ghats of India: a case study of North Kanara District. Pondy Paper in Social Sciences 7, Institut Français de Pondichéry.Google Scholar
Chessel, D. & Dolédec, S. 1993. HyperCard© Stacks and QuickBasic Microsoft© Programme Library for the Analysis of Environmental Data. URA CNRS 1451, Université de Lyon 1.Google Scholar
Crow, T. R. 1980. A rain forest chronicle: a 30-year record of change in structure and composition at El Verde, Puerto Rico. Biotropica 12:4245.CrossRefGoogle Scholar
Curtis, J. T. & McIntosh, R. P. 1950. The interrelations of certain analytic and synthetic phytosociological characters. Ecology 31:434455.CrossRefGoogle Scholar
Cusset, G. 1980. Sur les paramètres intervenant dans la croissance des arbres: la relation hauteur/diamètre de l'axe primaire aérien. Candollea 35:231255.Google Scholar
Doledec, S. & Chessel, D. 1992. Programmathèque ADE: Analyses multivariées el expression graphique des données environnementales (fiches pratiques). Université Claude Bernard, Lyon.Google Scholar
Durrieu de Madron, L. 1993. Mortalité, chablis et role des trouées dans la sylvigenèse avant et après exploitation sur le dispositif d'étude sylvicole de Paracou, Guyane Françaisc. Thèse de l'Université de Nancy I. 203 pp.Google Scholar
Ferry, B. 1992. Etude des humus forestiers de la région des Ghâts occidentaux (Inde du sud): facteurs climatiques, édaphiques et biologiques intervenant dans le stockage de la matière organique du sol. Thèse de l'Université de Nancy I. 182 pp.Google Scholar
Garrigues, J.-P., Derand, D. & Hegde, R. 1993. Anthropic action on the vegetation in the Western Ghats of India (Shimoga District, Karnataka): a study using agrarian systems analysis. Pondy Paper in Social Sciences 12, Institut Français de Pondichéry.Google Scholar
Hallé, F., Oldeman, R. A. A. & Tomlinson, P. B. 1978. Tropical trees and forests: an architectural analysis. Springer-Verlag, Berlin. 441 pp.CrossRefGoogle Scholar
Hartshorn, G. 1983. Plants: introduction. Pp. 118157 in Janzen, D. H. (ed.). Costa Rican natural history. University of Chicago Press, Chicago.Google Scholar
Hladik, A. 1982. Dynamique d'une forêt équatoriale africaine: mesure en temps réel at comparaison des potentiels de croissance des différentes espèces. Acta Oecologia 3:373392.Google Scholar
Kochummen, K. M., La Frankie, J. V. & Manokaran, N. 1990. Floristic composition of Pasoh Forest Reserve, a lowland rain forest in Peninular Malaysia. Journal of Tropical Forest Science 3:113.Google Scholar
Legris, P. & Meher-Homji, V. M. 1968. Floristic elements in the vegetation of India. Pp. 536543 in Proceedings of the symposium in recent advances in tropical ecology. International Society of Tropical Ecology, Varanasi.Google Scholar
Leigh, E. G. Jr., Rand, A. S. & Windsor, D. M. 1982. Ecology of a tropical forest: seasonal rhythms and long-term changes. Smithsonian Institution Press, Washington, DC.468 pp.Google Scholar
Lieberman, D. & Lieberman, M. 1987. Forest tree growth and dynamics at La Selva, Costa Rica (1969–1982). Journal of Tropical Ecology 3:347358.CrossRefGoogle Scholar
Loffeier, M. E. 1988. Reconstitution après exploitation sélective en forêt sempervirente du Coorg (Inde). Acta Oecologia, Oecologia Generalis 9:6987.Google Scholar
Manokaran, N. & Kochummen, K. M. 1987. Recruitment, growth and mortality of tree species in a lowland dipterocarp forest in Peninsular Malaysia. Journal of Tropical Ecology 3:315330.CrossRefGoogle Scholar
Manokaran, N. & La Frankie, J. V. 1990. Stand structure of Pasoh Forest Reserve, a lowland rain forest in Peninsular Malaysia. Journal of Tropical Forest Sciences 3:1424.Google Scholar
Manokaran, N., La Frankie, J. V., Kochummen, K. M., Quah, E. S., Klahn, J. E., Ashton, P. S. & Hubbell, S. P. 1990. Methodology for the fifty hectare research plot at Pasoh forest. Forest Research Institute of Malaysia, Research Pamphlet 104.Google Scholar
Newbery, D. McC, Campbell, E. J. F., Lee, Y. F., Ridsdale, C. E. & Still, M. J. 1992. Primary lowland dipterocarp forest at Danum Valley, Sabah, Malaysia: structure, relative abundance and family composition. Philosophical Transactions of the Royal Society of London, Series B 335:341356.CrossRefGoogle Scholar
Nicholson, D. I. 1965. A study of virgin rain forest near Sandakan, North Borneo. Pp. 6787 in Proceedings of the symposium on ecological research into humid tropics vegetation, Kuching. UNESCO, Paris.Google Scholar
Okali, D. U. U. & Ola-Adams, B. A. 1987. Tree population changes in treated rain forest at Omo Forest Reserve, south-western Nigeria. Journal of Tropical Ecology 3:291313.CrossRefGoogle Scholar
Oldeman, R. A. A. 1974. L'architecture de la forêt Guyanaise. Mémoires ORSTOM 73, 204 pp.Google Scholar
Oldeman, R. A. A. 1983. Tropical rain forest, architecture, silvigenesis, diversity. Pp. 139150 in Sutton, S. L., Whitmore, T. C. & Chadwick, A. C. (eds). Tropical rain forest: ecology and management. British Ecological Society. Special Publication 2, Blackwell, Oxford. 498 pp.Google Scholar
Oldemann, R. A. A. 1990. Forests: elements of silvology. Springer-Verlag, Berlin. 624 pp.CrossRefGoogle Scholar
Pascal, J.-P. 1982a. Forest map of South-India (Mercara-Mysore sheet). Travaux de la Section Scientifique et Technique, Hors série 18, Institut Français de Pondichéry.Google Scholar
Pascal, J.-P. 1982b. Bioclimates of the Western Ghats (2 sheets at 1:500 000). Travaux de la Section Scientifique et Technique, Hors série 17, Institut Français de Pondichéry.Google Scholar
Pascal, J.-P. 1984. Les forêts denses humides des Ghâts occidentaux de I'Inde. Ecologie, structure, floristique, succession. Travaux de la Section Scientifique et Technique, Tome XX, Institut Français de Pondichéry. 365 pp. English version. 1988. Wet evergreen forests of the Western Ghats of India (Ecology, structure, floristic composition and succession). Travaux de la Section Scientifique et Technique, Tome XXbis, Institut Français de Pondichéry.Google Scholar
Pascal, J.-P. 1995. Quelques exemples de problèmes posés a l'analyste et au modélisateur par la complexité de la forêt tropicale humide. In Actes du séminaire de modélisation de la forêt tropicale – échelles, usages, biodiversité, 19–23 juillet 1993, Kourou. Revue d'Ecologie: Terre et vie 50:237249.Google Scholar
Pascal, J.-P. & Ramesh, B. R. 1987. A field key to the trees and lianas of evergreen forests of the Western Ghats (India). Travaux de la Section Scientifique et Technique, Tome XXIII, Institut Français de Pondichéry. 236 pp.Google Scholar
Pelissier, R. & Rléra, B. 1993. Dix ans de dynamique d'une forêt dense humide de Guyane Française. Revue d'Ecologie (Terre et Vie) 48:2133.Google Scholar
Peterschmitt, E. 1993. Les couvertures ferrallitiques des Ghâts occidentaux en Inde du Sud: caractères généraux sur l'escarpement et dégradation par hydromorphie sur les revers. Publications du Département d'Ecologie 32, Institut Français de Pondichéry. 146 pp.Google Scholar
Proctor, J., Anderson, J. M., Chai, P. & Vallack, H. W. 1983. Ecological studies in four contrasting lowland rain forests in Gunung Mulu National Park, Sarawak. I – Forest environment structure and floristics. Journal of Ecology 71:237260.CrossRefGoogle Scholar
Putz, F. E. & Milton, K. 1982. Tree mortality rate on Barro Colorado Island. Pp. 95100 in Leigh, E. G. Jr., Rand, A. S. & Windsor, D. M. (eds). Ecology of a tropical forest. Smithsonian Institution Press, Washington, DC.468 pp.Google Scholar
Ramesh, B. R. & Pascal, J.-P. 1991. Distribution of endemic arborescent evergreen species in the Western Ghats. Pp. 17 in Proceedings of the symposium on rare, endangered and endemic plants of the Western Ghats. Thiruvananthapuram, India.Google Scholar
Rankin-de-Merona, J. M., Hutchings, R. W. H. & Lovejoy, J. E. 1990. Tree mortality and recruitments over a five-year period in undisturbed upland rainforest of the Central Amazon. Pp. 573584 in Gentry, A. H. (ed.). Four neotropical rainforests. Yale University Press, New Haven and London.Google Scholar
Riéra, B. 1983. Chablis et cicatrisation en forêt guyanaise. Thèse de l'Université de Toulouse. 155 pp.Google Scholar
Riéra, B. & Alexandre, D. Y. 1988. Surface des chablis et temps de renouvellement en forêt dense tropicale. Acta Oecologia 9:211220.Google Scholar
Scherrer, B. 1984. Biostatistique. Gaëtan, Morin (ed.). Boucherville, Quebec, Canada.Google Scholar
Schmitt, L. 1984. Recherches sylvicoles sur les peuplements naturels en forêt dense guyanaise. Phase préliminaire: localisation du dispositif principal. Centre Technique Forestier Tropical, Nogent.Google Scholar
Shugart, H. G. 1984. A theory of forest dynamics. Springer, New York. 278 pp.CrossRefGoogle Scholar
Swaine, M. D., Hall, J. B. & Alexander, I. J. 1987. Tree population dynamics at Kade, Ghana (1968–1982). Journal of Tropical Ecology 3:331345.CrossRefGoogle Scholar
Uhl, C. & Murphy, P. G. 1981. Composition, structure and regeneration of a tierra firme forest in the Amazon basin of Venezuela. Tropical Ecology 22:219237.Google Scholar
Wissel, Ch. 1991. A model for the mosaic-cycle concept. Pp. 2245 in Remmert, H. (ed.). The mosaic-cycle concept of ecosystems. Springer-Verlag, Berlin. 168 pp.CrossRefGoogle Scholar
76
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Structure and floristic composition of a tropical evergreen forest in south-west India
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Structure and floristic composition of a tropical evergreen forest in south-west India
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Structure and floristic composition of a tropical evergreen forest in south-west India
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *