Skip to main content
×
Home
    • Aa
    • Aa

A review on agent-based technology for traffic and transportation

  • Ana L. C. Bazzan (a1) and Franziska Klügl (a2)
Abstract
Abstract

In the last few years, the number of papers devoted to applications of agent-based technologies to traffic and transportation engineering has grown enormously. Thus, it seems to be the appropriate time to shed light over the achievements of the last decade, on the questions that have been successfully addressed, as well as on remaining challenging issues. In the present paper, we review the literature related to the areas of agent-based traffic modelling and simulation, and agent-based traffic control and management. Later we discuss and summarize the main achievements and the challenges.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

T. Arentze , H. Timmermans 2005. Representing mental maps and cognitive learning in micro-simulation models of activity-travel choice dynamics. Transportation 32, 321340.

M. Balmer , M. Rieser , K. Meister , D. Charypar , N. Lefebre , K. Nagel 2009. MATSim-T: architecture and simulation times. In Multi-Agent Systems for Traffic and Transportation Engineering, Bazzan A. L. & Klügl, F. (eds). IGI Global, 5778.

J. Barceló (ed.) 2010. Fundamentals of Traffic Simulation. Springer.

J. Barceló , E. Codina , J. Casas , J. L. Ferber , D. García 2004. Microscopic traffic simulation: a tool for the design, analysis and evaluation of intelligent transport systems. Journal of Intelligent and Robotic Systems 41, 173203.

A. L. C. Bazzan 2005. A distributed approach for coordination of traffic signal agents. Autonomous Agents and Multiagent Systems 10(1), 131164.

A. L. C. Bazzan , F. Klügl 2005. Case studies on the Braess paradox: simulating route recommendation and learning in abstract and microscopic models. Transportation Research C 13(4), 299319.

A. L. C. Bazzan , D. de Oliveira , B. C. da Silva 2010. Learning in groups of traffic signals. Engineering Applications of Artificial Intelligence 23, 560568.

A. L. C. Bazzan , M. B. do Amarante , F. B. da Costa 2012. Management of demand and routing in autonomous personal transportation. Journal of Intelligent Transportation Systems 16(1), 111.

D. Charypar , K. Nagel , K. W. Axhausen 2007. An event-driven queue-based microsimulation of traffic flow. Transportation Research Record 2003, 3540.

B. Chen , H. H. Cheng 2010. A review of the applications of agent technology in traffic and transportation systems. IEEE Transactions in Intelligent Transportation Systems 11(2), 485497.

P. Davidsson , L. Henesey , L. Ramstedt , J. Törnquist , F. Wernstedt 2005. An analysis of agent-based approaches to transport logistics. Transportation Research C 13, 255271.

L. B. de Oliveira , E. Camponogara 2010. Multi-agent model predictive control of signaling split in urban traffic networks. Transportation Research Part C: Emerging Technologies 18(1), 120139.

A. de Palma , M. Ben-Akiva , D. Brownstone , C. Holt , T. Magnac , D. McFadden , P. Moffatt , N. Picard , K. Train , P. Wakker , J. Walker 2008. Risk, uncertainty and discrete choice models. Marketing Letters 19, 269285.

C. Desjardins , J. Laumônier , B. Chaib-draa 2009. Learning agents for collaborative driving. In Multi-Agent Systems for Traffic and Transportation, Bazzan, A. L. C. & Klügl, F. (eds). IGI Global, 240260.

H. Dia 2002. An agent-based approach to modeling driver route choice behaviour under the influence of real-time information. Transportation Research C 10(5–6), 331349.

C. Diakaki , M. Papageorgiou , K. Aboudolas 2002. A multivariable regulator approach to traffic-responsive network-wide signal control. Control Engineering Practice 10(2), 183195.

A. Doniec , R. Mandiau , S. Piechowiak , S. Espié 2008. A behavioral multi-agent model for road traffic simulation. Engineering Applications of Artificial Intelligence 21(8), 14431454.

P. G. Gipps 1981. A behavioural car-following model for computer simulation. Transportation Research Part B 15, 105111.

Q. Han , T. Arentze , H. Timmermans , D. Janssens , G. Wets 2009. A multi-agent modeling approach to simulate dynamic activity-travel patterns. In Multi-Agent Systems for Traffic and Transportation Engineering, Bazzan, A. L. & Klügl, F. (eds). IGI Global, 3656.

D. Helbing , S. Lämmer , P. Lebacque 2005. Self-organized control of irregular or perturbed network traffic. In Optimal Control and Dynamic Games, Deissenberg, C. & Hartl, R. (eds). Springer, 239.

A. Horni , D. M. Scott , M. Balmer , K. W. Axhausen 2009. Location choice modeling for shopping and leisure activities with matsim: combining micro-simulation and time geography. Transportation Research Record 2135, 8795.

J. W. Joubert , P. J. Fourie , K. W. Axhausen 2010. Large-scale agent-based combined traffic simulation of private cars and commercial vehicles. Transportation Research Record 2168, 2432.

A. Kesting , M. Treiber , D. Helbing 2009. Agents in traffic simulation. In Agents, Simulations and Applications, Uhrmacher, A. & Weyns, D. (eds). Taylor and Francis, 325356.

F. Klügl , A. L. C. Bazzan 2004. Simulated route decision behaviour: simple heuristics and adaptation. In Human Behaviour and Traffic Networks, Selten, R. & Schreckenberg, M. (eds). Springer, 285304.

I. Kosonen 2003. Multi-agent fuzzy signal control based on real-time simulation. Transportation Research C 11(5), 389403.

F. Ksontini , S. Espié , Z. Guessoum , R. Mandiau 2012. Traffic behavioral simulation in urban and suburban—representation of the drivers’ environment. In Advances on Practical Applications of Agents and Multi-Agent Systems, Demazeau, Y., Müller, J. P., Rodríguez, J. M. C. & Pérez, J. B. (eds). Springer, 115125.

R. Mandiau , A. Champion , J.-M. Auberlet , S. Espié , C. Kolski 2008. Behaviour based on decision matrices for a coordination between agents in a urban traffic simulation. Applied Intelligence 28(2), 121138.

K. Nagel , M. Schreckenberg 1992. A cellular automaton model for freeway traffic. Journal de Physique I 2, 22212229.

D. de Oliveira , A. L. C. Bazzan 2009. Multiagent learning on traffic lights control: effects of using shared information. In Multi-Agent Systems for Traffic and Transportation, Bazzan, A. L. C. & Klügl, F. (eds). IGI Global, 307321.

H. Prothmann , S. Tomforde , J. Branke , J. Hähner , C. Müller-Schloer , H. Schmeck 2011. Organic traffic control. In Organic Computing A Paradigm Shift for Complex Systems, Müller-Schloer, C., Schmeck, H. & Ungerer, T. (eds). Springer, 431446.

N. A. Ronald , T. A. Arentze , H. J. P. Timmermans 2011. The effects of different interaction protocols in agent-based simulation of social activities. International Journal of Agent Technologies and Systems 3(2), 1832.

D. A. Roozemond 2001. Using intelligent agents for pro-active, real-time urban intersection control. European Journal of Operational Research 131(2), 293301.

R. J. F. Rossetti , R. H. Bordini , A. L. C. Bazzan , S. Bampi , R. Liu , D. Van Vliet 2002. Using BDI agents to improve driver modelling in a commuter scenario. Transportation Research Part C: Emerging Technologies 10(5–6), 4772.

H. Schepperle , K. Böhm 2009. Valuation-aware traffic control—the notion and the issues. In Multi-Agent Systems for Traffic and Transportation, Bazzan, A. L. C. & Klügl, F. (eds). IGI Global, 218239.

Z. Sun , T. Arentze , H. Timmermans 2012. A heterogeneous latent class model of activity rescheduling, route choice and information acquisition decision under multiple uncertain events. Transportation Research Part C 25, 4660.

D. Teodorovic 2008. Swarm intelligence systems for transportation engineering: principles and applications. Transportation Research Part C: Emerging Technologies 16(6), 651667.

I. J. P. M. Timóteo , M. R. Araújo , R. J. F. Rossetti , E. C. Oliveira 2012. Using TraSMAPI for the assessment of multi-agent traffic management solutions. Progress in Artificial Intelligence 1, 157164.

K. Tumer , Z. T. Welch , A. Agogino 2009. Traffic congestion management as a learning agent coordination problem. In Multi-Agent Systems for Traffic and Transportation, Bazzan, A. L. C. & Klügl, F. (eds). IGI Global, 261279.

R. van Katwijk , P. van Koningsbruggen 2002. Coordination of traffic management instruments using agent technology. Transportation Research Part C: Emerging Technologies 10(5–6), 455471.

R. van Katwijk , P. van Koningsbruggen , B. De Schutter , J. Hellendoorn 2005. A test bed for multi-agent control systems in road traffic management. In Applications of Agent Technology in Traffic and Transportation Whitestein Series in Software Agent Technologies and Autonomic Computing,, Klügl, F., Bazzan, A. L. C. & Ossowski, S. (eds). Birkhäuser, 113131.

M. Vasirani , S. Ossowski 2011. A computational market for distributed control of urban road traffic systems. IEEE Transactions on Intelligent Transportation Systems 12(2), 313321.

J. Wahle , A. L. C. Bazzan , F. Klügl 2002. The impact of real time information in a two route scenario using agent based simulation. Transportation Research Part C: Emerging Technologies 10(5–6), 7391.

F.-Y. Wang 2008. Toward a revolution in transportation operations: AI for complex systems. IEEE Intelligent Systems 23(6), 813.

T. Yamashita , K. Kurumatani 2009. New approach to smooth traffic flow with route information sharing. In Multi-Agent Systems for Traffic and Transportation, Bazzan, A. L. C. & Klügl, F. (eds). IGI Global, 291306.

L. Zhang , D. Levinson 2004. Agent-based approach to travel demand modeling. Journal of the Transportation Research Board 1898, 2836.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Knowledge Engineering Review
  • ISSN: 0269-8889
  • EISSN: 1469-8005
  • URL: /core/journals/knowledge-engineering-review
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×