Skip to main content
×
Home
    • Aa
    • Aa

Resonant acceleration of electrons by intense circularly polarized Gaussian laser pulses

  • H.Y. Niu (a1), X.T. He (a2) (a3) (a4), B. Qiao (a2) (a5) and C.T. Zhou (a2) (a3) (a4)
Abstract
Abstract

Resonant acceleration of plasma electrons in combined circularly polarized Gaussian laser fields and self-generated quasistatic fields has been investigated theoretically and numerically. The latter includes the radial quasistatic electric field, the azimuthal quasistatic magnetic field and the axial one. The resonant condition is theoretically given and numerically testified. The results show some of the resonant electrons are accelerated to velocities larger than the laser group velocity and thus gain high energy. For peak laser intensity I0 = 1 × 1020 W cm−2 and plasma density n0 = 0.1ncr, the relativistic electron beam with energies increased from 207 MeV to 262 MeV with a relative energy width around 24% and extreme low beam divergence less than 1° has been obtained. The effect of laser intensity and plasma density on the final energy gain of resonant electrons is also investigated.

Copyright
Corresponding author
Address correspondence and reprint requests to: H.Y. Niu, Graduate School of China Academy of Engineering Physics, PO Box 2101 Beijing 100088, People's Republic of China. E-mail: niuhaiyan221@126.com
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

E. Esarey , C.B. Schroeder , E. Cormier-Michel , B.A. Shadwick , C.G.R. Geddes & W.P. Leemans (2007). Thermal effects in plasma-based accelerators. Phys. Plasmas 14, 056707.

R.G. Evans (1988) Particle accelerators-the light that never was. Nature 333, 296297.

J. Faure , Y. Glinec , A. Pukhov , S. Kiselev , S. Gordienko , E. Lefebvre , J.-P. Rousseau , F. Burgy & V. Malka (2004). A laser-plasma accelerator producing monoenergetic electron beams. Nature 431, 541544.

C.G.R. Geddes , C. Toth , J.V. Tilborg , E. Esarey , C.B. Schroeder , D. Bruhwiler , C. Nieter , J. Cary & W.P. Leemans (2004). High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538541.

H. Hamster , A. Sullivan , S. Gordon , W. White & R.W. Falcone (1993). Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Phys. Rev. Lett. 71, 27252728.

J.L. Hirshfield & C.B. Wang (2000). Laser-driven electron cyclotron autoresonance accelerator with production of an optically chopped electron beam. Phys. Rev. E 61, 72527255.

D.H.H. Hoffmann , A. Blazevic , P. Ni , P. Rosemej , M. Roth , N.A. Tahir , A. Tauschwitz , S. Udrea , D. Varentsov , K. Weyrich , Y. Maron (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.

H. Hora (1988). Particle acceleration by superposition of frequency-controlled laser pulses. Nature 333, 337338.

H. Hora , M. Hoelss , W. Scheid , J.X. Wang , Y.K. Ho , F. Osman & R. Castillo (2000). Principle of high accuracy of the nonlinear theory for electron acceleration in vacuum by lasers at relativistic intensities. Laser Part. Beams 18, 135144.

H. Hora , J. Badziak , M.N. Read , Yu-Tong Li , Tian-Jiao Liang , Yu C Ang , Sheng Liu Hong , Zheng-Ming , J. Zhang , F. Osmanm , G.H. Mi-Ley , Wei-Yan. Zhang , Xian-Tu He , Han-Sheng Peng , S. Glowacz , G. Jablonski , J. Wolowski , Z. Skladanovski , K. Jungwirth , K. Rohlena & J. Ulschmied (2007 b). Fast ignition by laser driven particle beams of very high intensity. Phys., Plasmas 14, 072701072717.

C. Joshi & T. Katsouleas (2003). Plasma Accelerators at the Energy Frontier and on Tabletops. Phys. Today 56(6), 4753.

R. Kodama , P.A. Norreys , K. Mima , A.E. Dangor , R.G. Evans , H. Fujita , Y. Kitagawa , K. Krushelnick , T. Miyakoshi , N. Miyanaga , T. Norimatsu , S.J. Rose , T. Shozaki , K. Shigemori , A. Sunahara , M. Tampo , K.A. Tamaka , Y. Toyama , T. Yamanaka & M. Zepf (2001). Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nature 412, 798802.

Q. Kong , S. Miyazaki , S. Kawata , K. Miyauchi , K. Nakajima , S. Masuda , N. Miyanaga & Y.K. Ho (2003). Electron bunch acceleration and trapping by the ponderomotive force of an intense short-pulse laser. Phys. Plasmas 10, 46054608.

C.S. Liu & V.K. Tripathi (2005). Ponderomotive effect on electron acceleration by plasma wave and betatron resonance in short pulse laser. Phys. Plasmas 12, 043103.

H. Liu , X.T. He & H. Hora (2006). Additional acceleration and colliation of relativistic electron beams by magnetic field resonance at very high intensity laser interaction. Appl. Phys. B: Lasers Opt. 82, 9397.

C.J. Mckinstrie & E.A. Startsev (1996). Electron acceleration by a laser pulse in a plasma. Phys. Rev. E 54, R1070R1073.

A. Pukhov & J. Meyer-ter-vehn (1996). Relativistic Magnetic Self-Channeling of Light in Near-Critical Plasma: Three-Dimensional Particle-in-Cell Simulation. Phys. Rev. Lett. 76, 39753978.

A. Pukhov , Z.M. Sheng & J. Meyer-terr-vehn (1999). Particle acceleration in relativistic laser channels. Phys. Plasmas 6, 28472854.

B. Qiao , S.P. Zhu , X.T. He & C.Y. Zheng (2005 b). Quasistatic magnetic and electric fields generated in intense laser plasma interaction. Phys. Plasmas 12, 053104.

B. Quesnel & P. Mora (1998). Theory and simulation of the interaction of ultraintense laser pulses with electrons in vacuum. Phys. Rev. E 58, 37193723.

Y.I. Salamin , S.X. Hu , K.Z. Hatsagortsyan & C.H. Keitel (2006). Relativistic high-power laser-matter interactions. Phys. Reports 427, 41155.

Z.M. Sheng & J. Meyer-ter-vehn (1996). Inverse Faraday effect and propagation of circularly polarized intense laser beams in plasmas. Phys. Rev. E 54, 18331842.

C.W. Siders , S.P. Leblanc , D. Fisher , T. Tajima , M.C. Downer , A. Babine , A. Stepanov & A. Sergeev (1996). Laser Wakefield Excitation and Measurement by Femtosecond Longitudinal Interferometry. Phys. Rev. Lett. 76, 35703573.

G.V. Stupakov & M.S. Zolotorev (2001). Ponderomotive Laser Acceleration and Focusing in Vacuum for Generation of Attosecond Electron Bunches. Phys. Rev. Lett. 86, 52745277.

M. Tabak , J.H. Ammer , M.E. Glinsky , W.L. Kruer , S.C. Wilke , J. Woodworth , E.M. Campbell & M.D. Perry (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 16261634.

T.T. Tajima & J.M. Dawson (1979). Laser Electron Accelerator. Phys. Rev. Lett. 43, 267270.

G.D. Tsakiris , C. Gahn & V.K. Tripathi (2000). Laser induced electron acceleration in the presence of static electric and magnetic fields in a plasma. Phys. Plasmas 7, 30173030.

M.Y. Yu , W. Yu , Z.Y. Chen , J. Zhang , Y. Yin , L.H. Cao , P.X. Lu & Z.Z. Xu (2003). Electron acceleration by an intense short-pulse laser in underdense plasma. Phys. Plasmas 10, 24682474.

C.Y. Zheng , X.T. He & S.P. Zhu (2005). Magnetic field generation and relativistic electron dynamics in circularly polarized intense laser interaction with dense plasma. Phys. Plasmas 12, 044505.

C.T. Zhou , X.T. He & M.Y. Yu (2006). A comparison of ultrarelativsic electron- and positron-bunch propagation in plasmas. Phys. Plasmas 13, 092109.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Laser and Particle Beams
  • ISSN: 0263-0346
  • EISSN: 1469-803X
  • URL: /core/journals/laser-and-particle-beams
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×