Skip to main content
    • Aa
    • Aa

Hollow laser self-confined plasma for extreme ultraviolet lithography and other applications

  • V. SIZYUK (a1), A. HASSANEIN (a1) and T. SIZYUK (a1)

Laser-produced plasma (LPP) devices are being developed as a light source for the extreme ultraviolet (EUV) lithography applications. One concern of such devices is to increase the conversion efficiency of laser energy to EUV light. A new idea based on the initiation and confinement of cumulative plasma jet inside a hollow laser beam is developed and simulated. The integrated computer model (HEIGHTS) was used to simulate the plasma behavior and the EUV radiation output in the LPP devices. The model takes into account plasma heat conduction and magnetohydrodynamic processes in a two-temperature approximation, as well as detailed photon radiation transport in 3D Monte Carlo model. The model employs cylindrical 2D version of a total variation-diminishing scheme (for the plasma hydrodynamics) and an implicit scheme with the sparse matrix linear solver (to describe heat conduction). Numerical simulations showed that the EUV efficiency of the proposed hollow-beam LPP device to be higher than the current standard devices.

Corresponding author
Address correspondence and reprint requests to: Valeryi Sizyuk, Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Ave, Bld. 308, Argonne, IL 60439. E-mail:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

Aota, T. & Tomie, T. (2005). Ultimate efficiency of extreme ultraviolet radiation from a laser-produced plasma. Phys. Rev. Lett.94, 015004.

Attwood, D. (2004). Extreme ultraviolet light sources for semiconductor manufacturing. J. Phys. D37(23).

Choi, I.W., Daido, H., Yamagami, S., Nagai, K., Norimatsu, T., Takabe, H., Suzuki, M., Nakayama, T. & Matsui, T. (2000). Detailed space-resolved characterization of a laser-plasma soft-x-ray source at 13.5-nm wavelength with tin and its oxides. J. Opt. Soc. Am. B17, 16161625.

Colombant, D.G. & Winsor, N.K. (1977). Thermal-force terms and self-generated magnetic fields in laser-produced plasmas. Phys. Rev. Lett.38, 697701.

Courtial, J., Dholakia, K., Allen, L. & Padgett, M.J. (1997). Second-harmonic generation and the conservation of orbital angular momentum with high-order laguerre-gaussian modes. Phys. Rev. A56, 41934196.

Dattoli, G., Ottaviani, P.L. & Renieri, A. (2005). Free electron laser high gain devices. Laser Part. Beams23, 303307.

de Bruijn, R., Koshelev, K. & Bijkerk, F. (2003). Enhancement of laser plasma EUV emission by shockwave–plasma interaction. J. Phys. D36, L88.

de Bruijn, R., Koshelev, K.N., Zakharov, S.V., Novikov, V.G. & Bijkerk, F. (2005). Enhancement of laser plasma extreme ultraviolet emission by shockwave–plasma interaction. Phys. Plasma12, 042701.

Desai, T. & Pant, H.C. (2000). Control of Rayleigh–Taylor instabilities in laser accelerated seeded targets. Laser Part. Beams18, 119128.

Dunn, J., Filevich, J., Smith, R.F., Moon, S.J., Rocca, J.J., Keenan, R., Nilsen, J., Shlyaptsev, V.N., Hunter, J.R., Ng, A. & Marconi, M.C. (2005). Picosecond 14.7 nm interferometry of high intensity laser-produced plasmas. Laser Part. Beams23, 913.

Fiedorowicz, H. (2005). Generation of soft X-rays and extreme ultraviolet (EUV) using a laser-irradiated gas puff target. Laser Part. Beams23, 365373.

Goldman, S.R. & Schmalz, R.F. (1987). Magnetic field behavior beyond the laser spot. Phys. Fluids30, 36083615.

Harilal, S.S., O'Shay, B. & Tillack, M.S. (2005). Debris mitigation in a laser-produced tin plume using a magnetic field. J. Appl. Phys.98, 036102.

Hassanein, A., Sizyuk, V., Tolkach, V., Morozov, V. & Rice, B.J. (2003). HEIGHTS initial simulation of discharge-produced plasma hydrodynamics and radiation transport for EUV lithography. Proc. SPIE5037, 714727.

Hassanein, A., Sizyuk, V., Tolkach, V., Morozov, V., Sizyuk, T., Rice, B.J. & Bakshi, V. (2004b). Simulation and optimization of DPP hydrodynamics and radiation transport for EUV lithography devices. Proc. SPIE5374, 413422.

Heckenberg, N.R., McDuff, R., Smith, C.P. & White, A.G. (1992). Generation of optical phase singularities by computer-generated holograms. Opt. Lett.17, 221223.

Johnston, T.W. & Dawson, J.M. (1973). Correct values for high-frequency power absorption by inverse bremsstrahlung in plasmas. Phys. Fluids16, 722.

Krücken, T., Bergmann, K., Juschkin, L. & Lebert, R. (2004). Fundamentals and limits for the EUV emission of pinch plasma sources for EUV lithography. J. Phys. D37, 32133224.

Kruglov, V.I., Logvin, Yu.A. & Volkov, V.M. (1992). The theory of spiral laser beams in nonlinear media. J. Modern Opt.39, 22772291.

Kubiak, G.D., Bernardez_II, L.J., Krenz, K.D. & Sweatt, W.C. (1999). Scale-up of a cluster jet laser plasma source for extreme ultraviolet lithography. Proc. SPIE3676, 669678.

Miloshevsky, G.V., Sizyuk, V.A., Partenskii, M.B., Hassanein A., &Jordan, P.C. (2006). Application of finite-difference methods to membrane-mediated protein interactions and to heat and magnetic field diffusion in plasmas. J. Comp. Phys.212, 2551.

Mora, P. (1981). Magnetic field generation in the underdense plasma. Phys. Fluids24, 22192226.

Myers, D.W., Fomenkov, I.V., Hansson, B.A.M., Klene, B.C. & Brandt, D.C. (2005). EUV source system development update: Advancing along the path to HVM. Proc. SPIE5751, 248259.

Nakamura, T., Sakagami, H., Johzaki, T., Nagatomo, H. & Mima, K. (2006). Generation and transport of fast electrons inside cone targets irradiated by intense laser pulses. Laser Part. Beams24, 58.

Ozaki, T., Kieffer, J.-C., Toth, R., Fourmaux, S. & Bandulet, H. (2006). Experimental prospects at the Canadian advanced laser light source facility. Laser Part. Beams24, 101106.

Padgett, M. & Allen, L. (2000). Light with a twist in its tail. Contemp. Phys.41, 275285.

Pankert, J., Apetz, R., Bergmann, K., Derra, G., Janssen, M., Jonkers, J., Klein, J., Kruecken, T., List, A., Loeken, M., Metzmacher, C., Neff, W., Probst, S., Prummer, R., Rosier, O., Seiwert, S., Siemons, G., Vaudrevange, D., Wagemann, D., Weber, A., Zink, P. & Zitzen O. (2005). Integrating Philips' extreme UV source in the alpha-tools. Proc. SPIE5751, 260271.

Richardson, M., Koay, C.-S., Takenoshita, K., Keyser, C. & Al-Rabban, M. (2004a). High conversion efficiency mass-limited Sn-based laser plasma source for extreme ultraviolet lithography. J. Vac. Sci. Technol. B22, 785790.

Richardson, M., Koay, C.-S., Takenoshita, K., Keyser, C., George, S., Teerawattansook, S., Al-Rabban, M. & Scott, H. (2004b). Laser plasma EUVL sources: progress and challenges. Proc. SPIE5374, 447453.

Schaumann, G., Schollmeier, M.S., Rodriguez-Prieto, G., Blazevic, A., Brambrink, E., Geissel, M., Korostiy, S., Pirzadeh, P., Roth, M., Rosmej, F.B., Faenov, A.Ya., Pikuz, T.A., Tsigutkin, K., Maron, Y., Tahir, N.A. & Hoffmann, D.H.H. (2005). High energy heavy ion jets emerging from laser plasma generated by long pulse laser beams from the NHELIX laser system at GSI. Laser Part. Beams23, 503512.

Sizyuk, V., Hassanein, A., Morozov, V., Tolkach, V., Sizyuk T., &Rice, B. (2006). Numerical simulation of laser-produced plasma devices for EUV lithography using the heights integrated model. Num. Heat Transf. A49, 215236.

Spitzer, R.C., Orzechowski, T.J., Phillion, D.W., Kauffman, R.L. & Cerjan, C.J. (1996). Conversion efficiencies from laser-produced plasmas in the extreme ultraviolet regime. J. Appl. Phys.79, 22512258.

Stamm, U. (2004b). Extreme ultraviolet light sources for use in semiconductor lithography—state of the art and future development. J. Phys. D37, 32443253.

Thareja, R.K. & Sharma, A.K. (2006). Reactive pulsed laser ablation: Plasma studies. Laser Part. Beams24, 311320.

Tóth, G. & Odstrčil, D. (1996). Comparison of some flux corrected transport and total variation diminishing numerical schemes for hydrodynamic and magnetohydrodynamic problems. J. Comp. Phys.128, 82100.

Tóth, G. (2000). The ∇·B = 0 constraint in shock-capturing magnetohydrodynamics codes. J. Comp. Phys.161, 605652.

Ullrich, A., Korner, H.J., Krotz, W., Ribitzki, G., Murnick, D.E., Matthias, E., Kienle, P. & Hoffmann, D.H.H. (1987). Heavy-ion excitation of rare-gas excimers. J. Appl. Phys.62, 357361.

Wagner, T., Eberl, E., Frank, K., Hartmann, W., Hoffmann, D.H.H. & Tkotz, R. (1996). XUV amplification in a recombining z-pinch plasma. Phys. Rev. Lett.76, 31243127.

White, J., Hayden, P., Dunne, P., Cummings, A., Murphy, N., Sheridan, P. & O'Sullivan, G. (2005). Simplified modeling of 13.5 nm unresolved transition array emission of a Sn plasma and comparison with experiment. J. Appl. Phys.98, 113301.

Widner, M.M. (1973). Self-generated magnetic fields in laser plasmas. Phys. Fluids16, 17781780.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Laser and Particle Beams
  • ISSN: 0263-0346
  • EISSN: 1469-803X
  • URL: /core/journals/laser-and-particle-beams
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 2
Total number of PDF views: 11 *
Loading metrics...

Abstract views

Total abstract views: 75 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 27th June 2017. This data will be updated every 24 hours.