Skip to main content Accessibility help

Kα emission and secondary electrons in femtosecond laser target interactions

  • Eran Nardi (a1), Zeev Zinamon (a1) and Yitzhak Maron (a1)


This paper deals with the contribution of secondary electron emission, produced during the slowing down of fast electrons, on the intensity and temporal shape of the generated Kα pulse. The problem is treated in a general manner emphasizing laser–plasma interactions, where it was suggested in the literature that these electrons could play an important role on the temporal duration. Here, we make use of a hybrid model which includes secondary emission in conjunction with the continuous slowing down approximation (CSDA). The results are compared with those obtained from a simple CSDA calculation, with no detailed accounting of secondary emission and without straggling. Secondary electrons were calculated to contribute up to an additional 20% to the total Kα yield and in the case of monoenergetic electron beams in thick targets also to influence the temporal shape. The pulse duration is not affected in a significant manner by the secondary electrons.


Corresponding author

Address correspondence and reprint requests to: E. Nardi, Faculty of Physics, Weizmann Institute of Science, Rehovot, Israel. E-mail:


Hide All
Agostinelli, S., Allison, J., Amako, K.A., Apostolakis, J., Araujo, H., Arce, P. & Howard, A. (2003). GEANT4—a simulation toolkit. Nucl. Instrum. Meth. Phys. Res. Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 506, 250303.
Andreo, P. & Brahme, A. (1984). Restricted energy-loss straggling and multiple scattering of electrons in mixed Monte Carlo procedures. Radiat. Res. 100, 1629.
Baro, J., Sempau, J., Fernández-Varea, J.M. & Salvat, F. (1995). PENELOPE: An algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter. Nucl. Instrum. Meth. Phys. Res. Section B: Beam Interactions with Materials and Atoms 100, 3146.
Bennett, G.R., Sinars, D.B., Wenger, D.F., Cuneo, M.E., Adams, R.G., Barnard, W.J. & Speas, C.S. (2006). High-brightness, high-spatial-resolution, 6.151 keV x-ray imaging of inertial confinement fusion capsule implosion and complex hydrodynamics experiments on Sandia's Z accelerator. Rev. Sci. Instrum. 77, 10E322.
Berger, M.J. (1963). Monte Carlo calculation of the penetration and diffusion of fast charged particles. Meth. Comput. Phys. 1, 135215.
Berger, M.J. & Selzer, S.M. (1964). Tables of energy losses and ranges of electrons and positrons. Studies in the penetration of charged particles in matter, nuclear science series report number 39, publication 1133, NAS -NRC Washington D.C., 205.
Bousis, C., Emfietzoglou, D., Hadjidoukas, P. & Nikjoo, H. (2008). A Monte Carlo study of absorbed dose distributions in both the vapor and liquid phases of water by intermediate energy electrons based on different condensed-history transport schemes. Phys. Med. Biol. 53, 37393761.
Chen, H., Shepherd, R., Chung, H.K., Kemp, A., Hansen, S.B., Wilks, S.C. & Beiersdorfer, P. (2007). Fast-electron-relaxation measurement for laser-solid interaction at relativistic laser intensities. Phys. Rev. E 76, 056402.
Gregori, G., Glenzer, S.H., Chung, H.K., Froula, D.H., Lee, R.W., Meezan, N.B. & Sawada, H. (2006). Measurement of carbon ionization balance in high-temperature plasma mixtures by temporally resolved X-ray scattering. J. Quant. Spectrosc. Radiat. Transfer 99, 225237.
Hatchett, S.P., Brown, C.G., Cowan, T., Henry, E.A., Johnson, J.S., Key, M.H., Koch, J.A., Langdon, A.B., Lasinski, B.F., Lee, W., Mackinnon, A.J., Pennington, D.M., Perry, M.D., Phillips, T.W., Roth, M., Sangster, T.C., Singh, M.S., Snavely, R.A., Stoyer, M.A., Wilks, S.C. & Yasuika, K. (2000). Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets. Phys. Plasmas 7, 20762082.
Kawrakov, I. (2000). Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version. Med. Phys. 27, 485498.
Mangles, S.P.D., Murphy, C.D., Najmudin, Z., Thomas, A.G.R., Collier, J.L., Dangor, A.E. & Krushelnick, K. (2004). Monoenergetic beams of relativistic electrons from intense laser–plasma interactions. Nature 431, 535538.
Murata, K., Kyser, D.F. & Ting, C.H. (1981). Monte Carlo simulation of fast secondary electron production in electron beam resists. J. Appl. Phys. 52, 43964405.
Nardi, E. & Zinamon, Z. (1978). Energy deposition by relativistic electrons in high-temperature targets. Phys. Rev. A 18, 1246.
Nardi, E., Zinamon, Z. & Maron, I. (2015) Energy content of target and electron flow in femtosecond laser target interactions. Laser Part. Beams 33, 245256.
Neumayer, P., Lee, H.J., Offerman, D., Shipton, E., Kemp, A., Kritcher, A.L. & Glenzer, S.H. (2009). Isochoric heating of reduced mass targets by ultra-intense laser produced relativistic electrons. High Energ. Dens. Phys. 5, 244248.
Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. & Hajdu, J. (2000). Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406, 752757.
Nilson, P.M., Davies, J.R., Theobald, W., Jaanimagi, P.A., Mileham, C., Jungquist, R.K. & Meyerhofer, D.D. (2012). Time-resolved measurements of hot-electron equilibration dynamics in high-intensity laser interactions with thin-foil solid targets. Phys. Rev. Lett. 108, 085002.
Park, H.S., Chambers, D.M., Chung, H.K., Clarke, R.J., Eagleton, R., Giraldez, E. & Zhang, B.B. (2006). High-energy Kα radiography using high-intensity, short-pulse lasers. Phys. Plasmas 13, 056309.
Passoni, M. & Lontano, M. (2004). One-dimensional model of the electrostatic ion acceleration in the ultraintense laser-solid interaction. Laser Part. Beams 22, 163169.
Patoary, M.A.R., Alfaz Uddin, M., Haque, A.K.F., Basak, A.K., Talukder, M.R., Karim, K.R. & Saha, B.C. (2008). Electron impact K-shell ionization cross sections of atoms at relativistic energies. Int. J. Quant. Chem. 108, 10231035.
Reich, C., Uschmann, I., Ewald, F., Düsterer, S., Lübcke, A., Schwoerer, H. & Gibbon, P. (2003). Spatial characteristics of Kα x-ray emission from relativistic femtosecond laser plasmas. Phys. Rev. E 68, 056408.
Riley, D., Angulo-Gareta, J.J., Khattak, F.Y., Lamb, M.J., Foster, P.S., Divall, E.J., Hooker, C.J., Langley, A.J., Clarke, R.J. & Neely, D. (2005). Kα yields from Ti foils irradiated with ultrashort laser pulses. Phys. Rev. E 71, 016406.
Riley, D., Khattak, F.Y., du Sert, O.P., Clarke, R.J., Divall, E.J., Edwards, M., Foster, P.S., Hooker, C.J., Langley, A.J., Mistry, P., Nely, D., Smith, J., Spindloe, C., Tallants, G.J. & Tolley, M. (2006). Efficient K-α and He-α emission from Ti foils irradiated with 400 nm, 45 fs laser pulses. J. Quant. Spectrosc. Radiat. Transfer 99, 537547.
Rischel, C., Rousse, A., Uschmann, I., Albouy, P.A., Geindre, J.P., Audebert, P. & Antonetti, A. (1997). Femtosecond time-resolved X-ray diffraction from laser-heated organic films. Nature 390, 490492.
Rohrlich, F. & Carlson, B.C. (1954). Positron-electron differences in energy loss and multiple scattering. Phys. Rev. 93, 3844.
Romagnani, L., Fuchs, J., Borghesi, M., Antici, P., Audebert, P., Ceccherini, F., Cowan, T., Grismayer, T., Kar, S., Macchi, A., Mora, P., Pretzler, G., Schiavi, A., Toncian, T. & Willi, O. (2005). Dynamics of electric fields driving the laser acceleration of multi-MeV protons. Phys. Rev. Lett. 95, 195001.
Schneider, D.O. & Cormack, D.V. (1959). Monte Carlo calculations of electron energy loss. Radiat. Res. 11, 418.
Sokolowski-Tinten, K., Blome, C., Blums, J., Cavalleri, A., Dietrich, C., Tarasevitch, A. & von der Linde, D. (2003). Femtosecond X-ray measurement of coherent lattice vibrations near the Lindemann stability limit. Nature. 422, 287289.
Zastrau, U., Audebert, P., Bernshtam, V., Brambrink, E., Kampfer, T., Kroupp, E., Loetzsch, R., Maron, Y., Ralchenko, Yu., Reinholz, H., Ropke, G. & Sengebusch, A. (2010). Temperature and Kα-yield radial distributions in laser-produced solid-density plasmas imaged with ultrahigh-resolution x-ray spectroscopy. Phys, Rev. E81, 02406.


Related content

Powered by UNSILO

Kα emission and secondary electrons in femtosecond laser target interactions

  • Eran Nardi (a1), Zeev Zinamon (a1) and Yitzhak Maron (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.