Skip to main content

Laser-driven nuclear fusion D+D in ultra-dense deuterium: MeV particles formed without ignition

  • Shahriar Badiei (a1), Patrik U. Andersson (a1) and Leif Holmlid (a1)

The short D-D distance of 2.3 pm in the condensed material ultra-dense deuterium means that it is possible that only a small disturbance is required to give D+D fusion. This disturbance could be an intense laser pulse. The high excess kinetic energy of several hundred eV given to the deuterons by laser induced Coulomb explosions in the material increases the probability of spontaneous fusion without the need for a high plasma temperature. The temperature calculated from the normal kinetic energy of the deuterons of 630 eV from the Coulomb explosions is 7 MK, maybe a factor of 10 lower than required for ignition. We now report on experiments where several types of high-energy particles from laser impact on ultra-dense deuterium are detected by plastic scintillators. Fast particles with energy up to 2 MeV are detected at a time-of-flight as short as 60 ns, while neutrons are detected at 50 ns time-of-flight after passage through a steel plate. A strong signal peaking at 22.6 keV u−1 is interpreted as due to mainly T retarded by collisions with H atoms in the surrounding cloud of dense atomic hydrogen.

Corresponding author
Address correspondence and reprint requests to: Leif Holmlid, Atmospheric Science, Department of Chemistry, University of Gothenburg, SE-412 96 Göteborg, Sweden. E-mail:
Hide All
Andersson, P.U. & Holmlid, L. (2009). Ultra-dense deuterium: a possible nuclear fuel for inertial confinement fusion (ICF). Phys. Lett. A 373, 30673070.
Ashcroft, N.W. (2005). Metallic superfluids. J. Low Temp. Phys. 139, 711726.
Badiei, S. & Holmlid, L. (2006). Experimental studies of fast fragments of H Rydberg matter. J. Phys. B: At. Mol. Opt. Phys. 39, 41914212.
Badiei, S. & Holmlid, L. (2008). Condensed atomic hydrogen as a possible target in inertial confinement fusion (ICF). J. Fusion Energy 27, 296300.
Badiei, S., Andersson, P.U. & Holmlid, L. (2009 a). Fusion reactions in high-density hydrogen: a fast route to small-scale fusion? Int. J. Hydr. Energy 34, 487495.
Badiei, S., Andersson, P.U. & Holmlid, L. (2009 b). High-energy Coulomb explosions in ultra-dense deuterium: time-of-flight mass spectrometry with variable energy and flight length. Int. J. Mass Spectrom. 282, 7076.
Betti, R., Solodov, A.A., Delettrez, J.A. & Zhou, C. (2006). Gain curves for direct-drive fast ignition at densities around 300 g/cc. Phys. Plasmas 13, 100703-1-4.
Blaich, Th., Elze, Th. W., Emling, H., Freiesleben, H., Grimm, K., Henning, W., Holzmann, R., Ickert, G., Keller, J.G., Klingler, H., Kneissl, W., König, R., Kulessa, R., Kratz, J.V., Lambrecht, D., Lange, J.S., Leifels, Y., Lubkiewicz, E., Proft, M., et al. (1992). A large area detector for high-energy neutrons. Nucl. Instrum. and Meth. A 314, 136154.
Buersgens, F., Madison, K.W., Symes, D.R., Hartke, R., Osterhoff, J., Grigsby, W., Dyer, G. & Ditmire, T. (2006). Angular distribution of neutrons from deuterated cluster explosions driven by femtosecond laser pulses. Phys. Rev. E 74, 016403.
Ditmire, T., Zweiback, J., Yanovsky, V.P., Cowan, T.E., Hays, G. & Wharton, K.B. (1999). Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters. Nature 398, 489–92.
Ghoranneviss, M., Malekynia, B., Hora, H., Miley, G.H. & He, X. (2008). Inhibition factor reduces fast ignition threshold for laser fusion using nonlinear force driven block acceleration. Laser Part. Beams 26, 105–11.
Holmlid, L. (2002). Conditions for forming Rydberg Matter: condensation of Rydberg states in the gas phase versus at surfaces. J. Phys. Condens. Mat. 14, 1346913479.
Holmlid, L., Hora, H., Miley, G. & Yang, X. (2009). Ultrahigh-density deuterium of Rydberg matter clusters for inertial confinement fusion targets. Laser Part. Beams 27, 529532.
Hora, H. & Miley, G.H. (2007). Maruhn–Greiner maximum of uranium fission for confirmation of low energy nuclear reactions LENR via a compound nucleus with double magic numbers. J. Fusion Energy 26, 349355.
Hora, H. (2007). New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 3745.
Imasaki, K. & Li, D. (2008). An approach of laser induced nuclear fusion. Laser Part. Beams 26, 37.
Jackson, J.D. (1957). Catalysis of nuclear reactions between hydrogen isotopes by μ mesons Phys. Rev. 106, 330339.
Kodama, R., Norreys, P.A., Mima, K., Dangor, A.E., Evans, R.G., Fujita, H., Kitagawa, Y., Krushelnick, K., Miyakoshi, T., Miyanaga, N., Norimatsu, T., Rose, S.J., Shozaki, T., Shigemori, K., Sunahara, A., Tampo, M., Tanaka, K.A., Toyama, Y., Yamanaka, T. & Zepf, M. (2001). Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nat. 412, 798802.
Li, X.Z., Liu, B., Chen, S., Wei, Q.M. & Hora, H. (2004). Fusion cross-sections for inertial fusion energy. Laser Part. Beams 22, 469477.
Lipson, A., Heuser, B.J., Castano, C., Miley, G., Lyakhov, B. & Mitin, A. (2005). Transport and magnetic anomalies below 70 K in a hydrogen-cycled Pd foil with a thermally grown oxide. Phys. Rev. B 72, 212507.
Meima, G.R. & Menon, P.G. (2001). Catalyst deactivation phenomena in styrene production. Appl. Catal. A 212, 239245.
Militzer, B. & Graham, R.L. (2006). Simulations of dense atomic hydrogen in the Wigner crystal phase. J. Phys. Chem. Solids 67, 21362143.
Muhler, M., Schlögl, R. & Ertl, G. (1992). The nature of the iron oxide-based catalyst for dehydrogenation of ethylbenzene to styrene. 2. Surface chemistry of the active phase. J. Catal. 138, 413444.
Nuckolls, J., Wood, L., Thiessen, A. & Zimmerman, G. (1972). Laser compression of matter to super-high densities: thermonuclear (CTR) applications. Nat. 239, 139–42.
Tabak, M., Hammer, J., Glinsky, M.N., Kruer, W.L., Wilks, S.C. Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 16261634.
Winterberg, F. (2010 a). Ultradense deuterium. J. Fusion Energe. doi:10.1007/s10894-010-9280-4.
Winterberg, F. (2010 b). The release of thermonuclear energy by inertial confinement. Ways Towards Ignition. Singapore: World Scientific.
Yang, X., Miley, G.H. & Hora, H. (2009). Condensed Matter Cluster Reactions in LENR Power Cells for a Radical New Type of Space Power Source. AIP Conference Proc. 1103, 450458.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Laser and Particle Beams
  • ISSN: 0263-0346
  • EISSN: 1469-803X
  • URL: /core/journals/laser-and-particle-beams
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 4
Total number of PDF views: 18 *
Loading metrics...

Abstract views

Total abstract views: 367 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 17th March 2018. This data will be updated every 24 hours.