Skip to main content Accessibility help
×
Home

Mechanisms of level population in gas lasers pumped by ionizing radiation

  • Mendykhan U. Khasenov (a1)

Abstract

The mechanisms of level population in high pressure gas lasers pumped by ionizing radiation at the 3p-3s transitions of neon, the d-p transitions of argon, krypton, xenon, and triplet lines of mercury are analyzed. It is shown that dissociative recombination of molecular ions with electrons is not the basic process responsible for populating the p levels of inert gas atoms. It is assumed that the most likely channel for d-level population is direct excitation of atoms by secondary electrons and excitation transfer from buffer gas atoms, with p levels being populated by transitions from upper levels. Dissociative recombination of mercury molecular ions with electrons is the basic process responsible for populating the 73S1 level of mercury atoms.

Copyright

Corresponding author

Address correspondence and reprint requests to: Mendykhan U. Khasenov, 53 Kabanbay batyr ave., NURIS, Astana, 010000, Kazakhstan. E-mail: mendykhan.khassenov@nu.edu.kz

References

Hide All
Abramov, A.A., Gorbunov, V.V., Melnikov, S.P., Mukhamatullin, A.Kh., Pikulev, A.A., Sinitsyn, A.V., Sinyanskii, A.A. & Tsvetkov, V.M. (2006). Luminescence of nuclear-induced rare-gas plasmas in near infrared spectral range. Proc. SPIE 6263, 279296.
Apruzese, J.P., Giuliani, J.L., Wolford, M.F., Sethian, J.D., Petrov, G.M., Hinshelwood, D.D., Myers, M.C., Ponce, D.M., Hegeler, F. & Petrova, Ts. (2006). Experimental evidence for the role of the Xe2+ in pumping of the Ar-Xe infrared laser. Appl. Phys. Lett. 88, 121120.
Apruzese, J.P., Giuliani, J.L., Wolford, M.F., Sethian, J.D., Petrov, G.M., Hinshelwood, D.D., Myers, M.C., Dasgupta, A., Hegeler, F. & Petrova, Ts. (2008). Optimizing the Ar-Xe infrared laser on the Naval Research Laboratory's Electra generator. J. Appl. Phys. 104, 013101.
Barrios, A., Sheldon, J., Hardy, K. & Peterson, J.R. (1992). Superthermal component in an effusive beam of metastable krypton: Evidence of Kr2+ dissociative recombination. Phys. Rev. Lett. 69, 13481351.
Batyrbekov, G.A., Batyrbekov, E.G., Dolgikh, V.A., Khasenov, M.U., Rudoi, I.G., Soroka, A.M. & Tleuzhanov, A.B. (1987). Feasibility of construction of a quasi-cw laser utilizing 7s-6p transitions in mercury pumped by ionizing radiation. Sov. J. Quantum Electron. 17, 774775.
Batyrbekov, G.A., Batyrbekov, E. G., Dolgikh, V.A., Khasenov, M.U., Rudoi, I.G., Soroka, A.M. & Tleuzhanov, A.B. (1988). Luminescence of the mixtures of mercury and rare gases containing molecular additives with excitation by the ionizing radiation. J. Appl. Spectrosc. (Sov. J.) 49, 11391143.
Batyrbekov, G.A., Batyrbekov, E.G., Danilychev, V.A. & Khasenov, M.U. (1990). Efficiency of populating neon 3p-levels under ionized pumping. Opt. Spectrosc. (Sov. J.) 68, 12411245.
Benck, E.C., Lawler, J.E. & Dakin, J.T. (1989). Lifetimes, branching ratios, and absolute transition probabilities in Hg I. J. Opt. Soc. of Am. B 6, 1122.
Bochkov, A.V., Kryzhanowskii, V.A., Magda, E.P., Mukhin, S.L., Murzin, V.M. & Neznakhina, A.E. (1992). Quasi-cw lasing on the 73S1-63P2 atomic mercury transition. Techn. Phys. Lett. 18, 241243.
Burstein, M.L., Komarovskii, V.A., Fedorov, A.N. & Yurgenson, S.V. (1991). The study of quenching of the excited 2-p-levels of neon atoms with molecular hydrogen and argon. Opt. Spectrosc. 71, 240242.
Collins, C.B. & Lee, F.W. (1979). Measurement of the rate coefficients for the bimolecular and termolecular ion-molecule reactions of Ar2+ with selected atomic and molecular species. J. Chem. Phys. 71, 184191.
Collins, C.B. & Lee, F.W. (1980). Measurement of the rate coefficients for the bimolecular and termolecular ion-molecule reactions of Nе2+ with selected atomic and molecular species. J. Chem. Phys. 72, 53815389.
Denezhkin, I.A. & D'yachenko, P.P. (2009). Population and relaxation kinetics of 5d[3/2]1 level upon pulsed electron-beam excitation of pure xenon. Quan. Electron. 39, 135138.
Denezhkin, I.A. & D'yachenko, P.P. (2013). Luminescence from the laser transition 5d[3/2]1-6p[3/2]1 of atomic xenon upon excitation of He-Ar-Xe mixture by a pulsed electron beam of short duration. Opt. Spectrosc. 114, 183188.
Fedenev, F.V. & Tarasenko, V.F. (1998). Simulation of NPL in experiments with e-beam pumping. Laser Part. Beams 16, 327380.
Gorbunov, V.V., Grigor'ev, V.D., Dovbysh, L.E., Mel'nikov, S.P., Sinitsyn, A.V., Sinjanskii, A.A. & Tsetkov, V.M. (2004). The luminescence spectra in the 350–875 nm range of the dense gas excited by uranium fission fragments. Proc. RFNC-VNIIEF 6, 148185, [in Russian].
Hebner, G.A. (1993). Fission-fragment excitation of the high-pressure atomic neon laser at 703.2 and 724.5 nm. J. Appl. Phys. 74, 22032207.
Hebner, G.A. (1995). Gas temperature dependent output of the atomic argon and xenon lasers. IEEE J. Quan. Electron. 31, 16261631.
Johnsen, R., Macdonald, J. & Biondi, A. (1978). Thermal energy charge transfer rates for Ne+, Ne2+, Ar+ and Ar2+ ions with Kr and Xe atoms. J. Chem. Phys. 68, 29912992.
Karelin, A.V. & Yakovlenko, S.I. (1995). Kinetic model of an He-Ne-Ar-H2 laser pumped by hard ionising radiation. Quan. Electron. 25, 739745.
Kebarle, P., Haynes, R.M. &. Searles, S.K. (1967). Mass-spectrometric study of ions in Xe, Kr, Ar, Ne at pressures up to 40 torr: Termolecular formation of the rare-gas molecular ions. Bond dissociation energy of Ar2+ and Ne2+. J. Chem. Phys. 47, 16841691.
Khasenov, M.U. (2004). Emission of the 3He-Xe-Cd mixture in the active zone of a nuclear reactor. Quan. Electron. 34, 11241126.
Khasenov, M.U. & Smirnova, I.I. (2008). Possible use of ion-ion recombination in nuclear pumped laser. Proc. SPIE 6938, 69380J.
Khasenov, M.U. (2014). Optical emission of the nuclear-induced plasmas of gas mixtures. Internation. J. Opt. 748763.
Klopovskii, K.S., Lukyanova, A.V., Rakhimov, A.V. & Suetin, N.V. (1989). Numerical simulation of an atomic xenon laser. Sov. J. of Quant. Electron. 19, 133137.
Lindiger, W., Schmeltekopf, A.L. & Fehsenfeld, F.C. (1974). Temperature dependence of de-excitation rate constants of He(23S) by Ne, Ar, Xe, H2, N2, O2, NH3 and CO2. J. Chem. Phys. 61, 28902895.
Magda, E.P. (1993). Analyses of experimental and theoretical research of nuclear pumped lasers at the Institute of Technical Physics. Laser Part. Beams 11, 469476.
Mavlyutov, A.A., Mis'kevich, A.I. & Salamakha, B.S. (1993). Nuclear pumping of Ne-O2 and Ar-I2 mixtures. Laser Phys. 3, 103109.
Mayhev, C.A. (1992). Reactions of Ne+ and Ne2+ ions with several molecular species at 300 K: The importance of energy resonance, Franck-Condon factors and electron correlation effects on reaction efficiencies. J. Phys. B: At. Mol. Opt. Phys. 25, 18651881.
Mel'nikov, S.P., Sizov, A.N. & Sinyanskii, A.A. (2008). Nuclear Pumped Lasers. Sarov: VNIIEF [in Russian].
Ohwa, M., Moratz, T.J. & Kushner, M.J. (1989). Excitation mechanisms in electron beam pumped atomic xenon (5d-6p) laser in Ar/Xe mixtures. J. Appl. Phys. 66, 51315145.
Peters, P.J.M., Mei, Qi-Chu & Witterman, W.J. (1989). Pressure-dependent optical delay time measurements in a coaxial electron beam pumped Ar:Xe laser. Appl. Phys. Lett. 54, 193195.
Poletaev, E.D., Dorofeev, Yu.B., D'yachenko, P.P., Kopay Gora, A.P., Mavlyutov, A.A., Mis'kevich, A.I. & Salamakha, B.S. (1992). Emission characteristics of high-pressure pure neon and He-Ne mixture excited by nuclear particles. Techn. Phys. 62, 18.
Ramos, G.B., Schlamkovitz, M., Sheldon, J., Hardy, K.A. & Peterson, J.R. (1995). Observation of dissociative recombination of Ne2+ and Ar2+ directly to the ground state of the product atoms. Phys. Rev. A 51, 29452950.
Rhoades, R.A. & Verdeyen, J.T. (1992). Electron beam pumping of the 546.1 nm mercury laser. Appl. Phys. Lett. 60, 29512953.
Skrobol, C., Heindl, T., Krücken, R., Morozov, A., Steinhübl, R., Wieser, J. & Ulrich, A. (2009). A miniature electron beam pumped laser. European Phys. J. D 54, 103109.
Shneider, R.T. & Hohl, F. (1984). Nuclear pumped lasers. In Advances in Nuclear Science and Technol (Lewis, J. and Becker, M., Eds.), Vol. 16, pp. 123287, New York: Plenum Press.
Shon, J.W., Rhodes, R.L., Verdeyen, J.T. & Kushner, M.J. (1993 a). Short pulse electron beam excitation on the high-pressure atomic Ne laser. J. Appl. Phys. 73, 80598065.
Shon, J.W., Kushner, M.J., Hebner, J.A. & Hays, J.N. (1993 b). Predictions for gain in the fission-fragment-excited atomic xenon laser. J. Appl. Phys. 73, 26862694.
Shon, J.W. & Kushner, M.J. (1994). Excitation mechanisms and gain modeling of the high pressure atomic Ar laser in He/Ar mixtures. J. Appl. Phys. 75, 18831890.
Shul, R.J., Passarella, R., Upschulte, B.L., Keesee, R.G. & Castleman, A.W. Jr. (1987). Thermal energy reactions involving Ar+ monomer and dimer with N2, H2, Xe, and Kr. J. Chem. Phys. 86, 44464451.
Smirnov, B.M. (1982). Excited Atoms. Moscow: Energoatomizdat [in Russian].
Ulrich, A. (2012). Light emission from the particle beam induced plasma: An overview. Laser Part. Beams 30, 199205.
Ulrich, A., Adonin, A., Jacoby, J., Turtikov, V., Fernengel, D., Fertman, A., Golubev, A., Hoffmann, D.H.H., Hug, A., Krucken, R., Kulish, M., Menzel, J., Morozov, A., Ni, P., Nikolaev, D.N., Shilkin, N.S., Ternovoi, V.Ya., Udrea, S., Varentsov, D. & Wieser, J. (2006). Excimer laser pumped by an intense, high-energy heavy-ion beam. Phys. Review Lett. 97, 153901.
Voinov, A.M., Krivonosov, V.N., Mel'nikov, S.P., Pavlovskii, A.I. & Sinyanskii, A.A. (1990). Quasi-cw lasing on 3p-3s transitions of neon atom upon excitation of inert gases by uranium fission fragments. Sov. Physics Doklady 35, 568571.
Zagidulin, A.V., Bochkov, A.V., Mironenko, V.V. & Sofienko, G.S. (2012). A 500-J nuclear-pumped gas laser. Techn. Phys. Lett. 38, 10591062.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed