Skip to main content

Radiochromic film spectroscopy of laser-accelerated proton beams using the FLUKA code and dosimetry traceable to primary standards

  • D. Kirby (a1), S. Green (a2), F. Fiorini (a1), D. Parker (a1), L. Romagnani (a3) (a4), D. Doria (a3), S. Kar (a3), C. Lewis (a3), M. Borghesi (a3) and H. Palmans (a5)...

A new approach to spectroscopy of laser induced proton beams using radiochromic film (RCF) is presented. This approach allows primary standards of absorbed dose-to-water as used in radiotherapy to be transferred to the calibration of GafChromic HD-810 and EBT in a 29 MeV proton beam from the Birmingham cyclotron. These films were then irradiated in a common stack configuration using the TARANIS Nd:Glass multi-terawatt laser at Queens University Belfast, which can accelerate protons to 10–12 MeV, and a depth-dose curve was measured from a collimated beam. Previous work characterizing the relative effectiveness (RE) of GafChromic film as a function of energy was implemented into Monte Carlo depth-dose curves using FLUKA. A Bragg peak (BP) “library” for proton energies 0–15 MeV was generated, both with and without the RE function. These depth-response curves were iteratively summed in a FORTRAN routine to solve for the measured RCF depth-dose using a simple direct search algorithm. By comparing resultant spectra with both BP libraries, it was found that the effect of including the RE function accounted for an increase in the total number of protons by about 50%. To account for the energy loss due to a 20 µm aluminum filter in front of the film stack, FLUKA was used to create a matrix containing the energy loss transformations for each individual energy bin. Multiplication by the pseudo-inverse of this matrix resulted in “up-shifting” protons to higher energies. Applying this correction to two laser shots gave further increases in the total number of protons, N of 31% and 56%. Failure to consider the relative response of RCF to lower proton energies and neglecting energy losses in a stack filter foil can potentially lead to significant underestimates of the total number of protons in RCF spectroscopy of the low energy protons produced by laser ablation of thin targets.

Corresponding author
Address correspondence and reprint requests to: Daniel Kirby, School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom. E-mail:
Hide All
Badziak J., Jabłoński S., Parys P., Szydłowski A., Fuchs J. & Mancic A. (2010). Production of high-intensity proton fluxes by a 2ω Nd:glass laser beam. Laser Part. Beams 28, 575583.
Battistoni G., Muraro S., Sala P.R., Cerutti F., Ferrari A., Roesler S., Fasso A. & Ranft J. (2007). The FLUKA code: Description and benchmarking. Proceedings of the Hadronic Shower Simulation Workshop 2006, 3149.
Borghesi M., Campbell D.H., Schiavi A., Willi O., Mackinnon A.J., Hicks D., Patel P., Gizzi L.A., Galimberti M. & Clarke R.J. (2002). Laser-produced protons and their application as a particle probe. Laser Part. Beams 20, 269275.
Borghesi M., Mackinnon A.J., Campbell D.H., Hicks D.G., Kar S., Patel P.K., Price D., Romagnani L., Schiavi A. & Willi O. (2004). Multi-MeV Proton Source Investigations in Ultraintense Laser-Foil Interactions. Phys. Rev. Lett. 92, 055003.
Breschi E., Borghesi M., Galimberti M., Giulietti D., Gizzi L.A. & Romagnani L. (2004). A new algorithm for spectral and spatial reconstruction of proton beams from dosimetric measurements. Nucl. Instr. Meth. Phys. Res. A 522, 190195.
Bulanov S. & Khoroshkov V. (2002). Feasibility of using laser ion accelerators in proton therapy. Plasma Phys. Rpts 28, 453456.
Butson M.J., Yu P.K.N., Cheung T. & Metcalfe P. (2003). Radiochromic film for medical radiation dosimetry. Mater. Sci. Engin. R 41, 61120.
Clark E.L., Krushelnick K., Zepf M., Beg F.N., Tatarakis M., Machacek A., Santala M.I.K., Watts I., Norreys P.A. & Dangor A.E. (2000). Energetic heavy-ion and proton generation from ultraintense laser-plasma interactions with solids. Phys. Rev. Lett. 85, 1654.
Clarke R.J., Simpson P.T., Kar S., Green J.S., Bellei C., Carroll D.C., Dromey B., Kneip S., Markey K., McKenna P., Murphy W., Nagel S., Willingale L. & Zepf M. (2008). Nuclear activation as a high dynamic range diagnostic of laser-plasma interactions. Nucl. Instr. Meth. Phys. Res. A 585, 117120.
Dzelzainis T., Nersisyan G., Riley D., Romagnani L., Ahmed H., Bigongiari A., Borghesi M., Doria D., Dromey B., Makita M., White S., Kar S., Marlow D., Ramakrishna B., Sarri G., Zaka-Ul-Islam M., Zepf M. & Lewis C.L.S. (2010). The TARANIS laser: A multi-Terawatt system for laser-plasma investigations. Laser Part. Beams 28, 451461.
Ferrari A., Sala P.R., Fasso A. & Ranft J. (2005). FLUKA: A Multi-Particle Transport Code. Report No. CERN 2005-10, INFN/TC_05/11, SLAC-R-773. Geneva: CERN.
Ferreira B.C., Lopes M.C. & Capela M. (2009). Evaluation of an Epson flatbed scanner to read Gafchromic EBT films for radiation dosimetry. Phys. Med. Biol. 54, 10731085.
Hatchett S.P., Brown C.G., Cowan T.E., Henry E.A., Johnson J.S., Key M.H., Koch J.A., Langdon A.B., Lasinski B.F., Lee R.W., Mackinnon A.J., Pennington D.M., Perry M.D., Phillips T.W., Roth M., Sangster T.C., Singh M.S., Snavely R.A., Stoyer M.A., Wilks S.C. & Yasuike K. (2000). Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets. Phys. Plasmas 7, 20762082.
Hey D.S., Key M.H., Mackinnon A.J., MacPhee A.G., Patel P.K., Freeman R.R., Van Woerkom L.D. & Castaneda C.M. (2008). Use of GafChromic film to diagnose laser generated proton beams. Rev. Sci. Instr. 79, 4.
IAEA. (2000). Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry Based On Standards of Absorbed Dose to Water. Report No. TRS-398. Vienna: International Atomic Energy Agency.
Kirby D., Green S., Palmans H., Hugtenburg R., Wojnecki C. & Parker D. (2010). LET dependence of GafChromic films and an ion chamber in low-energy proton dosimetry. Phys. Med. Biol. 55, 417433.
Klassen N.V., van der Zwan L. & Cygler J. (1997). GafChromic MD-55: Investigated as a precision dosimeter. Med. Phys. 24, 19241934.
Lynch B.D., Kozelka J., Ranade M.K., Li J.G., Simon W.E. & Dempsey J.F. (2006). Important considerations for radiochromic film dosimetry with flatbed CCD scanners and EBT GAFCHROMIC film. Med. Phys. 33, 45514556.
Nürnberg F., Schollmeier M., Brambrink E., Blazevic A., Carroll D.C., Flippo K., Gautier D.C., Geissel M., Harres K., Hegelich B.M., Lundh O., Markey K., McKenna P., Neely D., Schreiber J. & Roth M. (2009). Radiochromic film imaging spectroscopy of laser-accelerated proton beams. Rev. Sci. Instr. 80, 033301033313.
Paelinck L., Neve W.D. & Wagter C.D. (2007). Precautions and strategies in using a commercial flatbed scanner for radiochromic film dosimetry. Phys. Med. Biol. 52, 231242.
Palmans H., Thomas R. & Kacperek A. (2006). Ion recombination correction in the Clatterbridge Centre of Oncology clinical proton beam. Phys. Med. Biol. 51, 903917.
Pegoraro F., Atzeni S., Borghesi M., Bulanov S., Esirkepov T., Honrubia J., Kato Y., Khoroshkov V., Nishihara K., Tajima T., Temporal M. & Willi O. (2004). Production of ion beams in high-power laser-plasma interactions and their applications. Laser Part. Beams 22, 1924.
Piermattei A., Miceli R., Azario L., Fidanzio A., Canne S.d., De Angelis C., Onori S., Pacilio M., Petetti E., Raffaele L. & Sabini M.G. (2000). Radiochromic film dosimetry of a low energy proton beam. Med. Phys. 27, 16551660.
Robson L., Simpson P.T., Clarke R.J., Ledingham K.W.D., Lindau F., Lundh O., McCanny T., Mora P., Neely D., Wahlstrom C.G., Zepf M. & McKenna P. (2007). Scaling of proton acceleration driven by petawatt-laser-plasma interactions. Nat Phys 3, 5862.
Schollmeier M., Harres K., Nürnberg F., Blazevic A., Audebert P., Brambrink E., Fernandez J.C., Flippo K.A., Gautier D.C., Geissel M., Hegelich B.M., Schreiber J. & Roth M. (2008). Laser beam-profile impression and target thickness impact on laser-accelerated protons. Phys. Plasmas 15, 12.
Snavely R.A., Key M.H., Hatchett S.P., Cowan T.E., Roth M., Phillips T.W., Stoyer M.A., Henry E.A., Sangster T.C., Singh M.S., Wilks S.C., MacKinnon A., Offenberger A., Pennington D.M., Yasuike K., Langdon A.B., Lasinski B.F., Johnson J., Perry M.D. & Campbell E.M. (2000). Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett. 85, 29452948.
Vatnitsky S.M. (1997). Radiochromic film dosimetry for clinical proton beams. Appl. Radiat. Isot. 48, 643651.
Wilks S.C., Langdon A.B., Cowan T.E., Roth M., Singh M., Hatchett S., Key M.H., Pennington D., MacKinnon A. & Snavely R.A. (2001). Energetic proton generation in ultra-intense laser-solid interactions. Phys. Plasmas 8, 542549.
Ziegler J.F. (2004). SRIM-2003. Nucl. Instr. Meth. Phys. Res. 219-220, 10271036.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Laser and Particle Beams
  • ISSN: 0263-0346
  • EISSN: 1469-803X
  • URL: /core/journals/laser-and-particle-beams
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 11
Total number of PDF views: 37 *
Loading metrics...

Abstract views

Total abstract views: 186 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st November 2017. This data will be updated every 24 hours.