Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-27T13:05:26.861Z Has data issue: false hasContentIssue false

Sample size and haplotype richness in population samples of the lichen-forming ascomycete Xanthoria parietina

Published online by Cambridge University Press:  06 August 2009

Louise LINDBLOM
Affiliation:
Department of Biology and Museum of Natural History, University of Bergen, P.O. Box 7800, NO-5020 Bergen, Norway. Email: louise.lindblom@bm.uib.no

Abstract

The fine-scale genetic variation and population structure of lichen-forming fungi is little known and sampling strategies are rarely recommended or discussed. I tested if the sample sizes of molecular data sets used in recent population studies of Xanthoria parietina revealed all haplotypes potentially present and, accordingly, quantified how many haplotypes were potentially missing in the samples. Data sets were concatenated from two geographical regions in Scandinavia and investigated if the sampling reached saturation at two levels: 1) individual-based using rarefaction curves and 2) population-based using species accumulation curves. At both levels, the matrices of two molecular markers (IGS and ITS) were analysed separately. The molecular markers show similar and parallel patterns in all analyses. Rarefaction analyses did not reveal different patterns for populations in different habitats, i.e., bark and rock. Species accumulation curves estimated with the Chao 1 richness estimator indicated that 23% of the IGS and 8% of the ITS haplotypes were not detected. Corresponding figures from an abundance-based coverage estimator (ACE) were 37% and 18%. Pilot studies are recommended to determine appropriate sample sizes for genetic-based population studies of lichen-forming fungi.

Type
Research Article
Copyright
Copyright © British Lichen Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baverstock, P. R. & Moritz, C. (1996) Project design. In Molecular Systematics (Hillis, D. M., Moritz, C. & Mable, B. K., eds): 1727. Sunderland: Sinauer.Google Scholar
Chao, A. (1984) Nonparametric estimation of the number of classes in a population. Scandinavian Journal of Statistics 11: 265270.Google Scholar
Chao, A. (1987) Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43: 783791.CrossRefGoogle ScholarPubMed
Chao, A. (2005) Species richness estimation. In Encyclopedia of Statistical Sciences (Balakrishnan, N., Read, C. B. & Vidakovic, B., eds): 79097916. New York: Wiley.Google Scholar
Chao, A. & Lee, S.-M. (1992) Estimating the number of classes via sample coverage. Journal of the American Statistical Association 87: 210217.CrossRefGoogle Scholar
Chazdon, R. L., Colwell, R. K., Denslow, J. S. & Guariguata, M. R. (1998) Statistical methods for estimating species richness of woody regeneration in primary and secondary rain forests of NE Costa Rica. In Forest Biodiversity Research, Monitoring and Modeling: Conceptual Background and Old World Case Studies (Dallmeier, F. & Comiskey, J. A., eds): 285309. Paris: Parthenon Publishing.Google Scholar
Colwell, R. K. (2005) EstimateS: Statistical Estimation of Species Richness and Shared Species from Samples. Version 8.0.0. Persistent url: <purl.oclc.org/estimates>>Google Scholar
Colwell, R. K. & Coddington, J. A. (1994) Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society London B 345: 101118.Google ScholarPubMed
Gotelli, N. J. & Colwell, R. K. (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4: 379391.CrossRefGoogle Scholar
Hortal, J., Borges, P. A. V. & Gaspar, C. (2006) Evaluating the performance of species richness estimators: sensitivity to sample grain size. Journal of Animal Ecology 75: 274287.CrossRefGoogle ScholarPubMed
Hurlbert, S. H. (1971) The non-concept of species diversity: a critique and alternative parameters. Ecology 52: 577586.CrossRefGoogle Scholar
Karp, A., Isaac, P. G. & Ingram, D. S. (1998) Molecular Tools for Screening Biodiversity: Plants and Animals. London: Chapman & Hall.CrossRefGoogle Scholar
Kull, T. & Oja, T. (2007) Low allozyme variation in Carex loliacea (Cyperaceae), a declining wood-land sedge. Annales Botanici Fennici 44: 267275.Google Scholar
Lindblom, L. & Ekman, S. (2006) Genetic variation and population differentiation in Xanthoria parietina on the island Storfosna, central Norway. Molecular Ecology 15: 15451559.CrossRefGoogle ScholarPubMed
Lindblom, L. & Ekman, S. (2007) New evidence corroborates population differentiation in Xanthoria parietina. Lichenologist 39: 259271.CrossRefGoogle Scholar
Magurran, A. E. (2004) Measuring Biological Diversity. Malden: Blackwell Publishing.Google Scholar
McDonald, B. A. (1997) The population genetics of fungi: tools and techniques. Phytopathology 87: 448453.CrossRefGoogle ScholarPubMed
Prentice, H. C., Lönn, M., Rosquist, G., Ihse, M. & Kindström, M. (2006) Gene diversity in a fragmented population of Briza media: grassland continuity in a landscape context. Journal of Ecology 94: 8797.CrossRefGoogle Scholar
Printzen, C., Ekman, S. & Tønsberg, T. (2003) Phylogeography of Cavernularia hultenii: evidence of slow genetic drift in a widely disjunct lichen. Molecular Ecology 12: 14731486.CrossRefGoogle Scholar
R Development Core Team (2008) R: a Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.Google Scholar
Rosquist, G. & Prentice, H. C. (2002) Genetic variation in Scandinavian Anthericum liliago (Anthericaceae): allopolyploidy, hybridization and immigration history. Plant Systematics and Evolution 236: 5572.CrossRefGoogle Scholar
Walser, J.-C., Holderegger, R., Gugerli, F., Hoebbe, S. E. & Scheidegger, C. (2005) Microsatellites reveal regional population differentiation and isolation in Lobaria pulmonaria, an epiphytic lichen. Molecular Ecology 14: 457467.CrossRefGoogle ScholarPubMed
Weir, B. S. (1996 a) Intraspecific differentiation. In Molecular Systematics (Hillis, D. M., Moritz, C. & Mable, B. K., eds): 385405. Sunderland: Sinauer.Google Scholar
Weir, B. S. (1996 b) Genetic Analysis II: Methods for Discrete Population Genetic Data. Sunderland: Sinauer.Google Scholar
Werth, S. & Sork, V. L. (2008) Local genetic structure in a North American epiphytic lichen, Ramalina menziesii (Ramalinaceae). American Journal of Botany 95: 568576.CrossRefGoogle Scholar
Werth, S., Wagner, H. H., Holderegger, R., Kalwij, J. M. & Scheidegger, C. (2006) Effect of disturbances on the genetic diversity of an old-forest associated lichen. Molecular Ecology 15: 911921.CrossRefGoogle ScholarPubMed
Zoller, S., Lutzoni, F. & Scheidegger, C. (1999) Genetic variation within and among populations of the threatened lichen Lobaria pulmonaria in Switzerland and implications for its conservation. Molecular Ecology 8: 20492059.CrossRefGoogle ScholarPubMed