[1]
Beilinson, A. A., Lusztig, G. and MacPherson, R.. A geometric setting for the quantum deformation of GL_{
n
}
. Duke Math. J.
61 (1990), 655–677.

[2]
Bourbaki, N.. *Algebra* I, Chapters 1–3 (Translated from the French). Reprint of the 1989 English translation “Elements of Mathematics” (Berlin) (Springer–Verlag, Berlin, 1998).

[3]
Chriss, N. and Ginzburg, V.. Representation Theory and Complex Geometry (Birkhäuser Boston
1997).

[4]
Dipper, R. and James, G. D.. The *q*-Schur algebra. Proc. London Math. Soc.
59 (1989), 23–50.

[5]
Dipper, R. and James, G. D..
*q*-tensor space and *q*-Weyl modules. Trans. Amer. Math. Soc.
327 (1991), 251–282.

[6]
Donkin, S.. On Schur algebras and related algebras I. J. Algebra
104 (1986), 310–328.

[7]
Donkin, S.. On Schur algebras and related algebras II. J. Algebra
111 (1987), 354–364.

[8]
Donkin, S.. On Schur algebras and related algebras III. integral representations. Math. Proc. Camb. Phil. Soc.
116 (1994), 37–55.

[9]
Doty, S.. Presenting generalised *q*-Schur algebras. Represent. Theory
7 (2003), 196–213 (electronic).

[10]
Doty, S.. Constructing quantised enveloping algebras via inverse limits of finite dimensional algebras. J. Algebra
321 (2009), 1225–1238.

[11]
Doty, S. and Giaquinto, A.. Generators and relations for Schur algebras. Electron. Res. Announc. Amer. Math. Soc.
7 (2001), 54–62 (electronic).

[12]
Doty, S. and Giaquinto, A.. Presenting Schur algebras. Internat. Math. Res. Not.
36 (2002), 1907–1944.

[13]
Goodman, F. and Graber, J.. On cellular algebras with Jucys Murphy elements. J. Algebra
330 (2011), 147–176.

[14]
Graham, J. J. and Lehrer, G. I.. Cellular algebras. Invent. Math.
123 (1996), 1–34.

[15]
Green, J. A.. Polynomial representations of GL_{
n
}
, Lecture Notes in Math. 830. (Springer–Verlag, Berlin–New York, 1980), (Second edition 2007.)

[16]
Humphreys, J. E.. Introduction to Lie Algebras and Representation Theory (Springer
1972).

[17]
Jantzen, J. C.. Lectures on Quantum Groups. American Math. Soc. (1996).

[18]
Jimbo, M.. A *q*-analogue of
, Hecke algebras and the Yang–Baxter equation. Lett. Math. Phys.
11 (1986), 247–252.

[19]
Kashiwara, M., Miwa, T., Petersen, J.–U. H. and Yung, C. M.. Perfect crystals and *q*-deformed Fock spaces. Selecta Math. (N.S.) 2 (1996), 415–499.

[20]
König, S. and Xi, C.. On the structure of cellular algebras. Algebras and modules, II (Geiranger, 1996) CMS Conf. Proc., 24 (Amer. Math. Soc., Providence, RI, 1998), 365–386.

[21]
König, S. and Xi, C.. Cellular algebras and quasi-hereditary algebras: a comparison. Electron. Res. Announc. Amer. Math. Soc.
5 (1999), 71–75 (electronic).

[22]
Lusztig, G.. Canonical bases in tensor products. Proc. Nat. Acad. Sci. U.S.A.
89 (1992), 8177–8179.

[23]
Lusztig, G.. Introduction to Quantum Groups (Birkhäuser, Boston
1993).