Skip to main content
×
Home
    • Aa
    • Aa

Cellular bases of generalised q-Schur algebras

  • STEPHEN DOTY (a1) and ANTHONY GIAQUINTO (a1)
Abstract
Abstract

Starting from their defining presentation by generators and relations, we develop the basic structure and representation theory of generalised q-Schur algebras of finite type.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[1] A. A. Beilinson , G. Lusztig and R. MacPherson . A geometric setting for the quantum deformation of GL n . Duke Math. J. 61 (1990), 655677.

[5] R. Dipper and G. D. James . q-tensor space and q-Weyl modules. Trans. Amer. Math. Soc. 327 (1991), 251282.

[6] S. Donkin . On Schur algebras and related algebras I. J. Algebra 104 (1986), 310328.

[7] S. Donkin . On Schur algebras and related algebras II. J. Algebra 111 (1987), 354364.

[8] S. Donkin . On Schur algebras and related algebras III. integral representations. Math. Proc. Camb. Phil. Soc. 116 (1994), 3755.

[9] S. Doty . Presenting generalised q-Schur algebras. Represent. Theory 7 (2003), 196213 (electronic).

[10] S. Doty . Constructing quantised enveloping algebras via inverse limits of finite dimensional algebras. J. Algebra 321 (2009), 12251238.

[11] S. Doty and A. Giaquinto . Generators and relations for Schur algebras. Electron. Res. Announc. Amer. Math. Soc. 7 (2001), 5462 (electronic).

[13] F. Goodman and J. Graber . On cellular algebras with Jucys Murphy elements. J. Algebra 330 (2011), 147176.

[14] J. J. Graham and G. I. Lehrer . Cellular algebras. Invent. Math. 123 (1996), 134.

[16] J. E. Humphreys . Introduction to Lie Algebras and Representation Theory (Springer 1972).

[18] M. Jimbo . A q-analogue of $U(\mathfrak{gl}(N+1))$ , Hecke algebras and the Yang–Baxter equation. Lett. Math. Phys. 11 (1986), 247252.

[19] M. Kashiwara , T. Miwa , J.–U. H. Petersen and C. M. Yung . Perfect crystals and q-deformed Fock spaces. Selecta Math. (N.S.) 2 (1996), 415499.

[21] S. König and C. Xi . Cellular algebras and quasi-hereditary algebras: a comparison. Electron. Res. Announc. Amer. Math. Soc. 5 (1999), 7175 (electronic).

[22] G. Lusztig . Canonical bases in tensor products. Proc. Nat. Acad. Sci. U.S.A. 89 (1992), 81778179.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 16 *
Loading metrics...

Abstract views

Total abstract views: 71 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 29th June 2017. This data will be updated every 24 hours.