Skip to main content Accessibility help
×
Home

Cellular bases of generalised q-Schur algebras

  • STEPHEN DOTY (a1) and ANTHONY GIAQUINTO (a1)

Abstract

Starting from their defining presentation by generators and relations, we develop the basic structure and representation theory of generalised q-Schur algebras of finite type.

Copyright

References

Hide All
[1] Beilinson, A. A., Lusztig, G. and MacPherson, R.. A geometric setting for the quantum deformation of GL n . Duke Math. J. 61 (1990), 655677.
[2] Bourbaki, N.. Algebra I, Chapters 1–3 (Translated from the French). Reprint of the 1989 English translation “Elements of Mathematics” (Berlin) (Springer–Verlag, Berlin, 1998).
[3] Chriss, N. and Ginzburg, V.. Representation Theory and Complex Geometry (Birkhäuser Boston 1997).
[4] Dipper, R. and James, G. D.. The q-Schur algebra. Proc. London Math. Soc. 59 (1989), 2350.
[5] Dipper, R. and James, G. D.. q-tensor space and q-Weyl modules. Trans. Amer. Math. Soc. 327 (1991), 251282.
[6] Donkin, S.. On Schur algebras and related algebras I. J. Algebra 104 (1986), 310328.
[7] Donkin, S.. On Schur algebras and related algebras II. J. Algebra 111 (1987), 354364.
[8] Donkin, S.. On Schur algebras and related algebras III. integral representations. Math. Proc. Camb. Phil. Soc. 116 (1994), 3755.
[9] Doty, S.. Presenting generalised q-Schur algebras. Represent. Theory 7 (2003), 196213 (electronic).
[10] Doty, S.. Constructing quantised enveloping algebras via inverse limits of finite dimensional algebras. J. Algebra 321 (2009), 12251238.
[11] Doty, S. and Giaquinto, A.. Generators and relations for Schur algebras. Electron. Res. Announc. Amer. Math. Soc. 7 (2001), 5462 (electronic).
[12] Doty, S. and Giaquinto, A.. Presenting Schur algebras. Internat. Math. Res. Not. 36 (2002), 19071944.
[13] Goodman, F. and Graber, J.. On cellular algebras with Jucys Murphy elements. J. Algebra 330 (2011), 147176.
[14] Graham, J. J. and Lehrer, G. I.. Cellular algebras. Invent. Math. 123 (1996), 134.
[15] Green, J. A.. Polynomial representations of GL n , Lecture Notes in Math. 830. (Springer–Verlag, Berlin–New York, 1980), (Second edition 2007.)
[16] Humphreys, J. E.. Introduction to Lie Algebras and Representation Theory (Springer 1972).
[17] Jantzen, J. C.. Lectures on Quantum Groups. American Math. Soc. (1996).
[18] Jimbo, M.. A q-analogue of $U(\mathfrak{gl}(N+1))$ , Hecke algebras and the Yang–Baxter equation. Lett. Math. Phys. 11 (1986), 247252.
[19] Kashiwara, M., Miwa, T., Petersen, J.–U. H. and Yung, C. M.. Perfect crystals and q-deformed Fock spaces. Selecta Math. (N.S.) 2 (1996), 415499.
[20] König, S. and Xi, C.. On the structure of cellular algebras. Algebras and modules, II (Geiranger, 1996) CMS Conf. Proc., 24 (Amer. Math. Soc., Providence, RI, 1998), 365386.
[21] König, S. and Xi, C.. Cellular algebras and quasi-hereditary algebras: a comparison. Electron. Res. Announc. Amer. Math. Soc. 5 (1999), 7175 (electronic).
[22] Lusztig, G.. Canonical bases in tensor products. Proc. Nat. Acad. Sci. U.S.A. 89 (1992), 81778179.
[23] Lusztig, G.. Introduction to Quantum Groups (Birkhäuser, Boston 1993).

Related content

Powered by UNSILO

Cellular bases of generalised q-Schur algebras

  • STEPHEN DOTY (a1) and ANTHONY GIAQUINTO (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.