Skip to main content

Characteristic varieties of arrangements

    • Published online: 01 July 1999

The kth Fitting ideal of the Alexander invariant B of an arrangement [Ascr ] of n complex hyperplanes defines a characteristic subvariety, Vk([Ascr ]), of the algebraic torus ([Copf ]*)n. In the combinatorially determined case where B decomposes as a direct sum of local Alexander invariants, we obtain a complete description of Vk([Ascr ]). For any arrangement [Ascr ], we show that the tangent cone at the identity of this variety coincides with [Rscr ]1k(A), one of the cohomology support loci of the Orlik–Solomon algebra. Using work of Arapura [1], we conclude that all irreducible components of Vk([Ascr ]) which pass through the identity element of ([Copf ]*)n are combinatorially determined, and that [Rscr ]1k(A) is the union of a subspace arrangement in [Copf ]n, thereby resolving a conjecture of Falk [11]. We use these results to study the reflection arrangements associated to monomial groups.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 7 *
Loading metrics...

Abstract views

Total abstract views: 54 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th January 2018. This data will be updated every 24 hours.