Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 22
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Ayyer, Arvind Schilling, Anne Steinberg, Benjamin and Thiéry, Nicolas M. 2015. Markov chains, ${\mathscr R}$-trivial monoids and representation theory. International Journal of Algebra and Computation, Vol. 25, Issue. 01n02, p. 169.


    Ismail, Mourad E. H. and Simeonov, Plamen 2013. Asymptotics of generalized derangements. Advances in Computational Mathematics, Vol. 39, Issue. 1, p. 101.


    Ismail, Mourad E.H. Kasraoui, Anisse and Zeng, Jiang 2013. Separation of variables and combinatorics of linearization coefficients of orthogonal polynomials. Journal of Combinatorial Theory, Series A, Vol. 120, Issue. 3, p. 561.


    Sánchez-Moreno, P. Dehesa, J.S. Zarzo, A. and Guerrero, A. 2013. Rényi entropies, <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mrow><mml:msub><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>q</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math> norms and linearization of powers of hypergeometric orthogonal polynomials by means of multivariate special functions. Applied Mathematics and Computation, Vol. 223, p. 25.


    Lass, Bodo 2012. The algebra of set functions II: An enumerative analogue of Hall’s theorem for bipartite graphs. European Journal of Combinatorics, Vol. 33, Issue. 2, p. 199.


    Manschot, Jan Pioline, Boris and Sen, Ashoke 2012. From black holes to quivers. Journal of High Energy Physics, Vol. 2012, Issue. 11,


    Kasraoui, Anisse Stanton, Dennis and Zeng, Jiang 2011. The combinatorics of Al-Salam–Chihara q-Laguerre polynomials. Advances in Applied Mathematics, Vol. 47, Issue. 2, p. 216.


    Obermaier, Josef and Szwarc, Ryszard 2007. Nonnegative linearization for little <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mi>q</mml:mi></mml:math>-Laguerre polynomials and Faber basis. Journal of Computational and Applied Mathematics, Vol. 199, Issue. 1, p. 89.


    Huczynska, Sophie and Mullen, Gary L. 2006. Frequency permutation arrays. Journal of Combinatorial Designs, Vol. 14, Issue. 6, p. 463.


    Lass, Bodo 2002. Variations sur le thème E+E=XY. Advances in Applied Mathematics, Vol. 29, Issue. 2, p. 215.


    Kim, Dongsu and Zeng, Jiang 2001. A Combinatorial Formula for the Linearization Coefficients of General Sheffer Polynomials. European Journal of Combinatorics, Vol. 22, Issue. 3, p. 313.


    Zeilberger, Doron 1995. How joe gillis discovered combinatorial special function theory. The Mathematical Intelligencer, Vol. 17, Issue. 2, p. 65.


    Gessel, Ira M 1990. Symmetric functions and P-recursiveness. Journal of Combinatorial Theory, Series A, Vol. 53, Issue. 2, p. 257.


    Gillis, J. Ismail, Mourad E. H. and Offer, T. 1990. An Asymptotic Problem in Derangement Theory. SIAM Journal on Mathematical Analysis, Vol. 21, Issue. 1, p. 262.


    Zeng, Jiang 1990. Linéarisation de Produits de Polynômes de Meixner, Krawtchouk, et Charlier. SIAM Journal on Mathematical Analysis, Vol. 21, Issue. 5, p. 1349.


    Foata, Dominique and Zeilberger, Doron 1988. Laguerre Polynomials, Weighted Derangements, and Positivity. SIAM Journal on Discrete Mathematics, Vol. 1, Issue. 4, p. 425.


    Jackson, D. M. and Goulden, I. P. 1980. A Formal Calculus for the Enumerative System of Sequences-III. Further Developments. Studies in Applied Mathematics, Vol. 62, Issue. 2, p. 113.


    Zeilberger, Doron 1980. The Algebra of Linear Partial Difference Operators and Its Applications. SIAM Journal on Mathematical Analysis, Vol. 11, Issue. 6, p. 919.


    Gillis, J. and Kleeman, J. 1979. A combinatorial proof of a positivity result. Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 86, Issue. 01, p. 13.


    Jackson, D. M. and Goulden, I. P. 1979. A Formal Calculus for the Enumerative System of Sequences-I. Combinatorial Theorems. Studies in Applied Mathematics, Vol. 61, Issue. 2, p. 141.


    ×
  • Mathematical Proceedings of the Cambridge Philosophical Society, Volume 79, Issue 1
  • January 1976, pp. 135-143

Derangements and Laguerre polynomials

  • S. Even (a1) and J. Gillis (a1)
  • DOI: http://dx.doi.org/10.1017/S0305004100052154
  • Published online: 24 October 2008
Abstract
Abstract

Given a set consisting of n1, objects of type 1, n2 of type 2, …, nk of type k, we denote by the number of possible derangements of the set i.e. permutations in which no object occupies a site originally occupied by an object of the same type. A formula is found for in terms of Laguerre polynomials, and some of its implications are considered.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

(3)J. Gillis and G. Weiss Products of Laguerre Polynomials. Math. Comp. 14 (1960), 60.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×