Skip to main content
×
Home
    • Aa
    • Aa

Simultaneous non-vanishing of GL(3) × GL(2) and GL(2) L-functions

  • RIZWANUR KHAN (a1)
Abstract
Abstract

Fix g a Hecke–Maass form for SL3(). In the family of holomorphic newforms f of fixed weight and large prime level q, we find the average value of the product . From this we derive a result on the simultaneous non-vanishing of these L-functions at the central point.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[1] A. O. L. Atkin and J. Lehner . Hecke operators on Γ0(m). Math. Ann. 185 (1970), 134160.

[5] W. Duke , J. B. Friedlander and H. Iwaniec . Bounds for automorphic L-functions. II. Invent. Math. 115 (1994), no. 2, 219239.

[7] D. Goldfeld and X. Li . Voronoi formulas on GL(n). Int. Math. Res. Not. (2006), Art. ID 86295, 25.

[11] H. Iwaniec and E. Kowalski . Analytic number theory. American Mathematical Society Colloquium Publications, vol. 53 (American Mathematical Society, 2004).

[12] H. Iwaniec , W. Luo and P. Sarnak . Low lying zeros of families of L-functions. Inst. Hautes Études Sci. Publ. Math. (2000), no. 91, 55131 (2001).

[13] H. Iwaniec and P. Sarnak . The non-vanishing of central values of automorphic L-functions and Landau–Siegel zeros. Israel J. Math. 120 (2000), no. part A, 155177.

[14] H. Jacquet and J. A. Shalika . A non-vanishing theorem for zeta functions of GLn. Invent. Math. 38 (1976/77), no. 1, 116.

[15] H. H. Kim . Functoriality for the exterior square of GL4 and the symmetric fourth of GL2. J. Amer. Math. Soc. 16 (2003), no. 1, 139–183 (electronic). With appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and Peter Sarnak.

[16] E. Kowalski , P. Michel and J. Vanderkam . Mollification of the fourth moment of automorphic L-functions and arithmetic applications. Invent. Math. 142 (2000), no. 1, 95151.

[17] E. Kowalski , P. Michel and J. Vanderkam . Rankin–Selberg L-functions in the level aspect. Duke Math. J. 114 (2002), no. 1, 123191.

[18] X. Li . The central value of the Rankin–Selberg L-functions. Geom. Funct. Anal. 18 (2009), no. 5, 16601695.

[19] X. Li . Bounds for GL(3) × GL(2) L-functions and GL(3) L-functions. Ann. of Math. (2) 173 (2011), no. 1, 301336.

[20] S.-C. Liu . Determination of GL(3) cusp forms by central values of GL(3) × GL(2) L-functions, level aspect. J. Number Theory 131 (2011), no. 8, 13971408.

[21] P. Michel . The subconvexity problem for Rankin–Selberg L-functions and equidistribution of Heegner points. Ann. of Math. (2) 160 (2004), no. 1, 185236.

[22] S. D. Miller and W. Schmid . Automorphic distributions, L-functions and Voronoi summation for GL(3). Ann. of Math. (2) 164 (2006), no. 2, 423488.

[25] M. Young . The second moment of GL(3) × GL(2) L-functions, integrated. Adv. Math. 226 (2011), no. 4, 35503578.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×