Skip to main content
×
Home
    • Aa
    • Aa

The Hardy space H1 on non-homogeneous metric spaces

  • TUOMAS HYTÖNEN (a1), DACHUN YANG (a2) and DONGYONG YANG (a3)
Abstract
Abstract

Let (, d, μ) be a metric measure space and satisfy the so-called upper doubling condition and the geometrical doubling condition. We introduce the atomic Hardy space H1(μ) and prove that its dual space is the known space RBMO(μ) in this context. Using this duality, we establish a criterion for the boundedness of linear operators from H1(μ) to any Banach space. As an application of this criterion, we obtain the boundedness of Calderón–Zygmund operators from H1(μ) to L1(μ).

Copyright
Corresponding author
Corresponding author
References
Hide All
[1]Chen W., Meng Y. and Yang D. Calderón-Zygmund operators on Hardy spaces without the doubling condition. Proc. Amer. Math. Soc. 133 (2005), 26712680.
[2]Coifman R. R. and Weiss G. Analyse harmonique non-commutative sur certains espaces homogènes. Lecture Notes in Math. 242 (Springer-Verlag, 1971).
[3]Coifman R. R. and Weiss G. Extensions of Hardy spaces and their use in analysis. Bull. Amer. Math. Soc. 83 (1977), 569645.
[4]Heinonen J. Lectures on Analysis on Metric Spaces (Springer-Verlag, 2001).
[5]Hu G., Meng Y. and Yang D. New atomic characterization of H 1 space with non-doubling measures and its applications. Math. Proc. Camb. Phil. Soc. 138 (2005), 151171.
[6]Hytönen T. A framework for non-homogeneous analysis on metric spaces, and the RBMO space of Tolsa. Publ. Mat. 54 (2010), 485504.
[7]Hytönen T. and Martikainen H. Non-homogeneous Tb theorem and random dyadic cubes on metric measure spaces. J. Geom. Anal., doi:10.1007/s12220-011-9230-z.
[8]Journé J.-L. Calderón–Zygmund operators, pseudodifferential operators and the Cauchy integral of Calderón. Lecture Notes in Math. 994 (Springer-Verlag, 1983).
[9]Liu L., Yang Da. and Yang Do. Atomic Hardy-type spaces between H 1 and L 1 on metric spaces with non-doubling measures. Acta Math. Sin. (Engl. Ser.) 27 (2011), 24452468.
[10]Luukkainen J. and Saksman E. Every complete doubling metric space carries a doubling measure. Proc. Amer. Math. Soc. 126 (1998), 531534.
[11]Meda S., Sjögren P. and Vallarino M. On the H 1-L 1 boundedness of operators. Proc. Amer. Math. Soc. 136 (2008), 29212931.
[12]Nazarov F., Treil S. and Volberg A. The Tb-theorem on non-homogeneous spaces. Acta Math. 190 (2003), 151239.
[13]Stein E. M. and Weiss G. On the theory of harmonic functions of several variables. I. The theory of H p-spaces. Acta Math. 103 (1960), 2562.
[14]Tolsa X. BMO, H 1, and Calderón–Zygmund operators for non doubling measures. Math. Ann. 319 (2001), 89149.
[15]Tolsa X. Littlewood–Paley theory and the T(1) theorem with non-doubling measures. Adv. Math. 164 (2001), 57116.
[16]Tolsa X. Painlevé's problem and the semiadditivity of analytic capacity. Acta Math. 190 (2003), 105149.
[17]Tolsa X. The space H 1 for nondoubling measures in terms of a grand maximal operator. Trans. Amer. Math. Soc. 355 (2003), 315348.
[18]Wu J. Hausdorff dimension and doubling measures on metric spaces. Proc. Amer. Math. Soc. 126 (1998), 14531459.
[19]Yosida K. Functional Analysis (Springer-Verlag, 1995).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 14 *
Loading metrics...

Abstract views

Total abstract views: 136 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st October 2017. This data will be updated every 24 hours.