[1]Arratia R. A. and Tavaré S.. Independent process approximations for random combinatorial structures. *Advances in Mathematics* (1993). (In the press.)

[2]Arratia R. A., Barbour A. D. and Tavaré S.. Poisson process approximations for the Ewens Sampling Formula. Ann. Appl. Prob. 2 (1992), 519–535.

[3]Barbour A. D.. Comment on a paper of Arratia, Goldstein and Gordon. Statistical Science (1990), 425–427.

[4]Barbour A. D., Holst L. and Janson S.. Poisson approximation. Oxford University Press, 1992.

[5]Car M.. Factorization dans F^{q}(X). C.R. Acad. Sci. *Paris Ser. I*. 294 (1982), 147–150.

[6]Car M.. Ensembles de polynômes irréductibles et théorèmes de densité. Acta Arith. 44 (1984), 323–342.

[7]Csörgo˝ M. and Révész P.. Strong approximation in probability and statistics. Academic Press, 1981.

[8]de Laurentis J. M. and Pittel B. G.. Random permutations and Brownian motion. Pacific J. Math. 119 (1985), 287–301.

[9]Diaconis P. and Pitman J. W.. Unpublished lecture notes. Statistics Department, University of California, Berkeley (1986).

[10]Diaconis P., McGrath M. and Pitman J. W.. Cycles and descents of random permutations. Preprint (1992).

[11]Donnelly P. and Joyce P.. Continuity and weak convergence of ranked and size-biassed permutations on an infinite simplex. Stoch. Proc. Applns 31 (1989), 89–103.

[12]Feller W.. The fundamental limit theorems in probability. Bull. Amer. Math. Soc. 51 (1945), 800–832.

[13]Feller W.. An introduction to probability theory and its applications. Vol I. Wiley, New York, 1950.

[14]Flajolet P. and Soria M.. Gaussian limiting distributions for the number of components in combinatorial structures. J. Comb. Th. A 53 (1990), 165–182.

[15]Gessel I. M. and Reutenauer C.. Counting permutations with given cycle structure and descent set. Preprint (1991).

[16]Hansen J.. Order statistics for decomposable combinatorial structures. Preprint (1991).

[17]Kolchin V. F.. Random mappings. Optimization Software, Inc., New York, 1986.

[18]Komlós J., Major P. and Tusnády G.. An approximation of partial sums of independent RV-s, and the sample DF. I, Z. Wahrscheinlichkeitstheorie verw. Geb. 32 (1975), 111–131.

[19]Kurtz T. G.. Strong approximation theorems for density dependent Markov chains. Stoch. Proc. Applns 6 (1978), 223–240.

[20]Lidl R. and Niederreiter H.. Introduction to finite fields and their applications. Cambridge University Press, 1986.

[21]Metropolis N. and Rota G.-C.. Witt vectors and the algebra of necklaces. Adv. Math. 50 (1983), 95–125.

[22]Metropolis N. and Rota G.-C.. The cyclotomic identity. In Contemporary Mathematics 34, (American Mathematical Society, 1984), pp. 19–27.

[23]Rachev S. T.. Probability metrics and the stability of stochastic models. Wiley, 1991.

[24]Rényi A.. Théorie des elements saillants d'une suite d'observations. Coll. Comb. Meth. Prob. Th. Mathematisk Institut, Aarhus Universitet (1962), 104–115.

[25]Shepp L. A. and Lloyd S. P.. Ordered cycle lengths in a random permutation. Trans. Amer. Math. Soc. 121 (1966), 340–357.

[26]Vershik A. M. and Shmidt A. A.. Limit measures arising in the theory of groups I. Theor. Prob. Applns 22 (1977), 79–85.