Skip to main content Accessibility help
×
Home

On the Schur product of H-matrices and non-negative matrices, and related inequalities

  • M. S. Lynn (a1)

Extract

1. Introduction. Let ℛn denote the set of all n × n matrices with real elements, and let denote the subset of ℛn consisting of all real, n × n, symmetric positive-definite matrices. We shall use the notation to denote that minor of the matrix A = (aij) ∈ ℛn which is the determinant of the matrix

The Schur Product (Schur (14)) of two matrices A, B ∈ ℛn is denned by

where A = (aij), B = (bij), C = (cij) and

Let ϕ be the mapping of ℛn into the real line defined by

for all A ∈ ℛn, where, as in the sequel, .

Copyright

References

Hide All
(1) Bachmann, P. Die Arithmetik der Quadratischen Formen (1925).
(2) Beckenbach, E. F. An inequality for definite Hermitian determinants. Bull. American Math. Soc. 35 (1929), 325329.
(3) Collatz, L. Einschliessungssatz für die characteristischen Zahlen von Matrizen. Math. Z. 48 (1942), 221226.
(4) Fischer, E. Über den Hadamard'schen Determinantensatz. Archiv. Math. Physik (3), 13 (1908), 3240.
(5) Frisch, M. R. Sur le théorème des déterminants de M. Hadamard. C.R. Acad. Sci., Paris, 185 (1927), 12441245.
(6) Gantmacher, F. R. The theory of matrices. Vol. II (Chelsea, New York, 1959).
(7) Gantmacher, F. R. and Krein, M. G. Oscillation matrices and kernels and small vibrations of dynamical systems (2nd ed., Gostekhizdat, Moscow, 1950). German translation in preparation.
(8) Mirsky, L. An introduction to linear algebra (Oxford University Press, 1955).
(9) Oppenheim, A. Inequalities connected with definite Hermitian forms. J. London Math. Soc. 5 (1930), 114119.
(10) Ostrowski, A. Über die Determinanten mit überwiegender Hauptdiagonale. Comment. Math. Helv. 10 (1937), 6996.
(11) Ostrowski, A. Note on bounds for some determinants. Duke Math. J. 22 (1955), 95102.
(12) Ostrowski, A. Determinanten mit überwiegender Hauptdiagonale und die absolute Konvergenz von Iterationsprozessen. Comment. Math. Helv. 30 (1956), 175210.
(13) Ostrowski, A. On some metrical properties of operator matrices and matrices partitioned into blocks. J. Math. Anal. Appl. 2 (1961), 161209.
(14) Schur, I. Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlichen vielen Veranderliehen. J. Reine Angew. Math. 140 (1911), 128.
(15) Wielandt, H. Unzerlegbare, nicht negative Matrizen. Math. Z. 52 (1950), 642648.

On the Schur product of H-matrices and non-negative matrices, and related inequalities

  • M. S. Lynn (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed