[Amb03]
Ambro, F.
Quasi-log varieties.
Tr. Mat. Inst. Steklova
240 (2003), Biratsion. Geom. Linein. Sist. Konechno Porozhdennye Algebry, 220–239.

[And11]
Andreatta, M.
Minimal Model Program with scaling and adjunction theory. Internat. J. Math.
24 (2013), no. 2, 1350007, 13 pp.

[AS95]
Angehrn, U. and Siu, Y.-T
Effective freeness and point separation for adjoint bundles.
Invent. Math.
122 (1995), no. 2, 291–308.

[AMRT10]
Ash, A., Mumford, D., Rapoport, M. and Tai, Y.-S.
Smooth Compactifications of Locally Symmetric Varieties. Second edition. Cambridge Mathematical Library (Cambridge University Press, Cambridge, 2010).

[AL12]
Atiyah, M. F. and LeBrun, C.
Curvature, cones, and characteristic numbers.
Math. Proc. Camb. Phil. Soc.
155 (2013), no. 1, 13–37.

[Aub78]
Aubin, T.
Équations du type Monge–Ampère sur les variétiés kählériennes compactes.
Bull. Sci. Math
2 (1978), 63–95.

[BHPV04]
Barth, W., Hulek, K., Peters, C. and Van de Ven, A. Compact complex surfaces. Second edition. Ergeb. Math. Grenzgeb. (3), 4 (Springer-Verlag, Berlin, 2004).

[Ber13]
Berman, R. J.
A thermodinamical formalism for Monge–Ampère equations, Moser-Trudinger inequalities and and Kähler–Einstein metrics.
Adv. Math.
248 (2013), 1254–1297.

[BCHM10]
Birkar, C., Cascini, P., Hacon, C. and McKernan, J.
Existence of minimal models for varieties of log general type.
J. Amer. Math. Soc.
23 (2010), 405–468.

[Bre13]
Brendle, S.
Ricci flat Kähler metrics with edge singularities. Int. Math. Res. Not. IMRN (2013), no. 24, 5727–5766.

[CGP13]
Campana, F., Guenancia, H. and Păun, M.
Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields. Ann. Sci. École Norm. Sup. (4), 46 (2013), no.6, 879–916.

[CG72]
Carlson, J. and Griffiths, P.
A defect relation for equidimensional holomorphic mappings between algebraic varieties. Ann. of Math.
95 (1972), 557–584.

[CDS13]
Chen, X.-X., Donaldson, S. K. and Sun, S.
Kähler–Einstein metrics on Fano manifolds, I-III.
J. Amer. Math. Soc.
28 (2015), no.1, 183–278.

[CY86]
Cheng, S. Y. and Yau, S.-T.
Inequality between Chern numbers of singular Kähler surfaces and characterisation of orbit space of discrete subgroups of SU(2, 1).
Contemp. Math.
49 (1986), 31–43.

[CG75]
Cornalba, M. and Griffiths, P.
Analytic cycles and vector bundles on non-compact algebraic varieties. Invent. Math.
28 (1975), 89–120.

[Dem92]
Demailly, J.-P.
Regularization of closed positive currents and intersection theory.
J. Alg. Geom.
1 (1992), 361–409.

[DiC14]
Di Cerbo, L. F.
On Kähler–Einstein surfaces with edge singularities.
J. Geom. Phys.
89 (2014), 414–421.

[DD15]
Di Cerbo, G. and Di Cerbo, L. F.
Effective results for complex hyperbolic manifolds.
J. London Math. Soc.
91 (2015), 89–104.

[Don10]
Donaldson, S. K.
Kähler metrics with cone singularities along a divisor. Essays in Mathematics and its Applications (Springer, Heidelberg, 2012), 49–79.

[ELMNP06]
Ein, L., Lazarsfeld, R., Mustaţǎ, M., Nakamaye, M. and Popa, M.
Asymptotic invariants of base loci. Ann. Inst. Fourier (Grenoble)
56 (2006), 1701–1734.

[Fuj09]
Fujino, O. Introduction to the log minimal model program for log canonical pairs. *arXiv:0907.1506v1* [math.AG] (2009).

[GH78]
Griffiths, P. and Harris, J.
Principles of Algebraic Geometry, Pure and Applied Mathematics (Wiley-Interscience, New York, 1978).

[HMX12]
Hacon, C., McKernan, J. and Xu, C. ACC for log canonical thresholds. *arXiv:1208.4150v1* [math.AG] (2012).

[Har70]
Hartshorne, R.
Ample Subvarieties of Algebraic Varieties. Lecture Notes in Math. vol. 156 (Springer-Verlag, Berlin-New York, 1970).

[Har77]
Hartshorne, R.
Algebraic Geometry. Graduate Texts in Math. No. 52 (Springer-Verlag, New York-Heidelberg, 1977).

[Iit82]
Iitaka, S.
Algebraic Geometry. An introduction to birational geometry of algebraic varieties. Graduate Texts in Math. **76** (Springer-Verlag, New York-Berlin, 1982).

[Jef96]
Jeffres, T. D. Kähler–Einstein cone metrics. Ph.D. Thesis (Stony Brook University, 1996).

[JMR11]
Jeffres, T. D., Mazzeo, R. and Rubinstein, Y. A. Kähler–Einstein metrics with edge singularities. *arXiv:1105.5216v2* [math.DG] (2011).

[KMM94]
Keel, S., Matsuki, K. and McKernan, J.
Log abundance theorem for threefolds.
Duke Math. J.
75 (1994), no. 1, 99–119.

[KMM04]
Keel, S., Matsuki, K. and McKernan, J.
Corrections to: “Log abundance theorem for threefolds''.
Duke Math. J.
122 (2004), no. 3, 625–630.

[Kob84]
Kobayashi, R.
Kähler–Einstein metric on an open algebraic manifold.
Osaka. J. Math.
21 (1984), 399–418.

[Kol92]
Kollár, J.
et al. Flips and abundance for algebraic threefolds. *Astérisque*, vol. 211 (1992).

[Kol97]
Kollár, J. Singularities of pairs. *Algebraic Geometry–Santa Cruz 1995*, 221–287, Proc. Symp. Pure Math. **62**, Part 1 (Amer. Math. Soc. Providence, RI, 1997).

[KM98]
Kollár, J. and Mori, S.
Birational geometry of algebraic varieties. Cambridge Tracts in Math. **134**. (Cambridge University Press, Cambridge, 1998).

[KMM92]
Kollár, J., Miyaoka, Y. and Mori, S.
Rational connectedness and boundedness of Fano manifolds.
J. Differential Geom.
36 (1992), no. 3, 765–779.

[Laz04a]
Lazarsfeld, R.
Positivity in Algebraic Geometry I. Ergeb. Math. Grenzgeb. 3. Folge. A series of Modern Survys in Mathematics **48** (Springer-Verlag, Berlin, 2004).

[Laz04b]
Lazarsfeld, R.
Positivity in Algebraic Geometry II. Ergeb. Math. Grenzgeb. 3. Folge. A series of Modern Survys in Mathematics **49** (Springer-Verlag, Berlin, 2004).

[Laz09]
Lazic, V. Adjoint rings are finitely generated. *arXiv:0905.2707v3*[math.AG] (2009).

[MR12]
Mazzeo, R. and Rubinstein, Y. A. The Ricci continuity method for the complex Monge–Ampère equation, with applications to Kähler–Einstein edge metrics. *C. R. Acad. Paris, Ser I* (2012), 1–5.

[McK02]
McKernan, J. Boundedness of log terminal Fano pairs of bounded index. *arXiv: math/0205214v1*[math.AG] (2002).

[Mum77]
Mumford, D.
Hirzebruch's proportionality theorem in the non-compact case.
Invent. Math.
42 (1977), 239–272.

[For91]
Forster, O.
Lecture on Riemann surfaces. Graduate Texts in Math. **81**. (Springer-Verlag, New York, 1991).

[Pet06]
Petersen, P.
Riemannian Geometry. Second edition. Graduate Texts in Math. **171** (Springer, New York, 2006).

[Sib85]
Sibony, N.
Quelques problemes de prolongement de courants en analyse complexe.
Duke Math. J.
52 (1985), 157–197.

[Tia96]
Tian, G.
Kähler–Einstein metrics on algebraic manifolds. Trascendental methods in algebraic geometry (Cetraro 1994), Lecture Notes in Math. **1646** (Springer, Berlin, 1996), 143–185.

[TY87]
Tian, G. and Yau, S.-T.
Existence of Kähler–Einstein metrics on complete Kähler manifolds and their applications to algebraic geometry. Mathematical Aspects of String Theory (San Diego, Calif., 1986) Adv. Ser. Math. Phys. **1**, (World Sci. Publishing, Singapore, 1987), 574–628.

[Wu08]
Wu, D.
Kähler–Einstein metrics of negative Ricci curvature on general quasi-projective manifolds.
Comm. Anal. Geom.
16, (2008), 395–435.

[Wu09]
Wu, D.
Good Kähler metrics with prescribed singularities.
Asian J. Math.
13 (2009), 131–150.

[Yau78a]
Yau, S.-T.
On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation.
Comm. Pure Appl. Math.
31 (1978), 339–411.

[Yau78b]
Yau, S.-T.
Métriques de Kähler–Einstein sur les variétiés ouvertes. Séminarie Palaiseau, Astérisque
58 (1978), 163–167.