Skip to main content Accessibility help

Stiefel–Whitney numbers for singular varieties

  • CARL McTAGUE (a1)


This paper determines which Stiefel–Whitney numbers can be defined for singular varieties compatibly with small resolutions. First an upper bound is found by identifying the F2-vector space of Stiefel–Whitney numbers invariant under classical flops, equivalently by computing the quotient of the unoriented bordism ring by the total spaces of RP3 bundles. These Stiefel–Whitney numbers are then defined for any real projective normal Gorenstein variety and shown to be compatible with small resolutions whenever they exist. In light of Totaro's result [Tot00] equating the complex elliptic genus with complex bordism modulo flops, equivalently complex bordism modulo the total spaces of 3 bundles, these findings can be seen as hinting at a new elliptic genus, one for unoriented manifolds.



Hide All
[Ati58]Atiyah, M. F.On analytic surfaces with double points. Proc. Roy. Soc. London. Ser. A 247 (1958), 237244.
[Che70]Cheeger, J A combinatatorial formula for Stiefel–Whitney classes. In Topology of manifolds, vol. 1969 of Proceedings of the University of Georgia Topology of Manifolds Institute, pages xiv+514 (Markham Publishing Co., 1970).
[FM81]Fulton, W. and MacPherson, R.Categorical framework for the study of singular spaces. Mem. Amer. Math. Soc. 31 (243) (1981), vi+165.
[FM97]Fu, J. H. G. and McCrory, C.Stiefel–Whitney classes and the conormal cycle of a singular variety. Trans. Amer. Math. Soc. 349 (2) (1997), 809835.
[Ful98]Fulton, W.Intersection theory, volume 2 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics] (Springer–Verlag, second edition, 1998).
[GM83]Goresky, M. and MacPherson, R.Intersection homology. II. Invent. Math. 72 (1) (1983), 77129.
[GM88]Goresky, M. and MacPherson, R.Stratified Morse theory, volume 14 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. (Springer-Verlag, Berlin, 1988).
[Gor84]Mark Goresky, R.Intersection homology operations. Comment. Math. Helv. 59 (3) (1984), 485505.
[GP89]Goresky, M. and Pardon, W.Wu numbers of singular spaces. Topology 28 (3) (1989), 325367.
[Har77]Hartshorne, R.Algebraic Geometry. Graduate Texts in Mathematics, No. 52 (Springer-Verlag, 1977).
[KM98]Kollár, J. and Mori, S.Birational geometry of algebraic varieties Cambridge Tracts in Mathematics vol. 134 (Cambridge University Press, 1998). With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original.
[Mac74]MacPherson, R. D.Chern classes for singular algebraic varieties. Ann. of Math. (2), 100 (1974), 423432.
[MP03]McCrory, C. and Parusiński, A.Virtual Betti numbers of real algebraic varieties. C. R. Math. Acad. Sci. Paris 336 (9) (2003), 763768.
[MS74]Milnor, J. W. and Stasheff, J. D.Characteristic classes. Ann. Math. Stud. No. 76. (Princeton University Press, 1974).
[Sti35]Stiefel, E.Richtungsfelder und Fernparallelismus in n-dimensionalen Mannigfaltigkeiten. Comment. Math. Helv. 8 (1) (1935), 305353.
[Sul71]Sullivan, D. Combinatorial invariants of analytic spaces. In Proceedings of Liverpool Singularities—Symposium, I (1969/70), pages 165–168 (Springer, 1971).
[Tho54]Thom, R.Quelques propriétés globales des variétés différentiables. Comment. Math. Helv. 28 (1954), 1786.
[Tot00]Totaro, B.Chern numbers for singular varieties and elliptic homology. Ann. of Math. (2) 151 (2) (2000) 757791.
[Tot02]Totaro, B. Topology of singular algebraic varieties. In Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002) pages 533–541 (Higher Ed. Press, 2002).
[vH03]van Hamel, J.Towards an intersection homology theory for real algebraic varieties. Int. Math. Res. Not. (25) (2003), 13951411.
[Whi40]Whitney, H.On the theory of sphere-bundles. Proc. Nat. Acad. Sci. U.S.A., 26 (1940), 148153.

Stiefel–Whitney numbers for singular varieties

  • CARL McTAGUE (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.