Skip to main content Accessibility help
×
Home

An Automated Computational Approach for Complete In-Plane Compositional Interface Analysis by Atom Probe Tomography

Published online by Cambridge University Press:  06 February 2019


Zirong Peng
Affiliation:
Department of Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
Yifeng Lu
Affiliation:
Database Systems and Data Mining Group, Ludwig-Maximilians-Universität München, Oettingenstraße 67, 80538 München, Germany
Constantinos Hatzoglou
Affiliation:
Normandie Univ, UNIROUEN, INSA Rouen, CNRS, GPM, 76000 Rouen, France
Alisson Kwiatkowski da Silva
Affiliation:
Department of Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
Francois Vurpillot
Affiliation:
Normandie Univ, UNIROUEN, INSA Rouen, CNRS, GPM, 76000 Rouen, France
Dirk Ponge
Affiliation:
Department of Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
Dierk Raabe
Affiliation:
Department of Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
Baptiste Gault
Affiliation:
Department of Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
Corresponding

Abstract

We introduce an efficient, automated computational approach for analyzing interfaces within atom probe tomography datasets, enabling quantitative mapping of their thickness, composition, as well as the Gibbsian interfacial excess of each solute. Detailed evaluation of an experimental dataset indicates that compared with the composition map, the interfacial excess map is more robust and exhibits a relatively higher resolution to reveal compositional variations. By field evaporation simulations with a predefined emitter mimicking the experimental dataset, the impact of trajectory aberrations on the measurement of the thickness, composition, and interfacial excess of the decorated interface are systematically analyzed and discussed.


Type
Data Analysis
Copyright
Copyright © Microscopy Society of America 2019 

Access options

Get access to the full version of this content by using one of the access options below.

References

Blavette, D, Vurpillot, F, Pareige, P & Menand, A (2001). A model accounting for spatial overlaps in 3D atom-probe microscopy. Ultramicroscopy 89, 145153.CrossRefGoogle Scholar
Cairney, JM, Rajan, K, Haley, D, Gault, B, Bagot, PAJ, Choi, P-P, Felfer, PJ, Ringer, SP, Marceau, RKW & Moody, MP (2015). Mining information from atom probe data. Ultramicroscopy 159, 324337.CrossRefGoogle ScholarPubMed
Cantwell, PR, Ma, S, Bojarski, SA, Rohrer, GS & Harmer, MP (2016). Expanding time—temperature-transformation (TTT) diagrams to interfaces: A new approach for grain boundary engineering. Acta Mater 106, 7886.CrossRefGoogle Scholar
Cantwell, PR, Tang, M, Dillon, SJ, Luo, J, Rohrer, GS & Harmer, MP (2014). Grain boundary complexions. Acta Mater 62, 148.CrossRefGoogle Scholar
Chellali, MR, Balogh, Z, Bouchikhaoui, H, Schlesiger, R, Stender, P, Zheng, L & Schmitz, G (2012). Triple junction transport and the impact of grain boundary width in nanocrystalline Cu. Nano Lett 12, 34483454.CrossRefGoogle ScholarPubMed
Chookajorn, T, Murdoch, HA & Schuh, CA (2012). Design of stable nanocrystalline alloys. Science 337, 951 LP-951954.CrossRefGoogle ScholarPubMed
De Geuser, F, Lefebvre, W, Danoix, F, Vurpillot, F, Forbord, B & Blavette, D (2007). An improved reconstruction procedure for the correction of local magnification effects in three-dimensional atom-probe. Surf Interface Anal 39, 268272.CrossRefGoogle Scholar
Dillon, SJ, Tang, M, Carter, WC & Harmer, MP (2007). Complexion: A new concept for kinetic engineering in materials science. Acta Mater 55, 62086218.CrossRefGoogle Scholar
Ester, M, Kriegel, H-P, Sander, J & Xu, X (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. Proceedings of the Second International Conference on Knowledge Discovery and Data Mining 226231.Google Scholar
Felfer, P, Ceguerra, A, Ringer, S & Cairney, J (2013). Applying computational geometry techniques for advanced feature analysis in atom probe data. Ultramicroscopy 132, 100106.CrossRefGoogle ScholarPubMed
Felfer, P, Scherrer, B, Demeulemeester, J, Vandervorst, W & Cairney, JM (2015). Mapping interfacial excess in atom probe data. Ultramicroscopy 159, 438444.CrossRefGoogle ScholarPubMed
Gault, B, Moody, MP, Cairney, JM & Ringer, SP (2012). Atom Probe Microscopy. New York, NY: Springer New York.CrossRefGoogle Scholar
Gault, B, Moody, MP, de Geuser, F, Haley, D, Stephenson, LT & Ringer, SP (2009). Origin of the spatial resolution in atom probe microscopy. Appl Phys Lett 95, 034103.CrossRefGoogle Scholar
Gibson, MA & Schuh, CA (2015). Segregation-induced changes in grain boundary cohesion and embrittlement in binary alloys. Acta Mater 95, 145155.CrossRefGoogle Scholar
Gruber, M, Vurpillot, F, Bostel, A & Deconihout, B (2011). Field evaporation: A kinetic Monte Carlo approach on the influence of temperature. Surf Sci 605, 20252031.CrossRefGoogle Scholar
Hagége, S, Carter, CB, Cosandey, F & Sass, SL (1982). The variation of grain boundary structural width with misorientation angle and boundary plane. Philos Mag A 45, 723740.CrossRefGoogle Scholar
Harmer, MP (2011). The phase behavior of interfaces. Science 332, 182183.CrossRefGoogle ScholarPubMed
Hatzoglou, C, Radiguet, B & Pareige, P (2017). Experimental artefacts occurring during atom probe tomography analysis of oxide nanoparticles in metallic matrix: Quantification and correction. J Nucl Mater 492, 279291.CrossRefGoogle Scholar
Herbig, M, Raabe, D, Li, YJ, Choi, P, Zaefferer, S & Goto, S (2014). Atomic-scale quantification of grain boundary segregation in nanocrystalline material. Phys Rev Lett 112, 126103.CrossRefGoogle ScholarPubMed
Hofmann, S (2013). Auger- and X-Ray Photoelectron Spectroscopy in Materials Science. Berlin: Springer.CrossRefGoogle Scholar
Keast, VJ & Williams, DB (2001). Grain boundary chemistry. Curr Opin Solid State Mater Sci 5, 2330.CrossRefGoogle Scholar
Kelly, TF & Miller, MK (2007). Invited review article: Atom probe tomography. Rev Sci Instrum 78, 031101.CrossRefGoogle ScholarPubMed
Khalajhedayati, A, Pan, Z & Rupert, TJ (2016). Manipulating the interfacial structure of nanomaterials to achieve a unique combination of strength and ductility. Nat Commun 7, 10802.CrossRefGoogle ScholarPubMed
Kirchheim, R (2002). Grain coarsening inhibited by solute segregation. Acta Mater 50, 413419.CrossRefGoogle Scholar
Kirchheim, R (2007). Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background. Acta Mater 55, 51295138.CrossRefGoogle Scholar
Krakauer, BW & Seidman, DN (1993). Absolute atomic-scale measurements of the Gibbsian interfacial excess of solute at internal interfaces. Phys Rev B 48, 67246727.CrossRefGoogle ScholarPubMed
Kundu, A, Asl, KM, Luo, J & Harmer, MP (2013). Identification of a bilayer grain boundary complexion in Bi-doped Cu. Scr Mater 68, 146149.CrossRefGoogle Scholar
Kuzmina, M, Herbig, M, Ponge, D, Sandlobes, S & Raabe, D (2015). Linear complexions: Confined chemical and structural states at dislocations. Science 349, 10801083.CrossRefGoogle ScholarPubMed
Kuzmina, M, Ponge, D & Raabe, D (2015). Grain boundary segregation engineering and austenite reversion turn embrittlement into toughness: Example of a 9 wt.% medium Mn steel. Acta Mater 86, 182192.CrossRefGoogle Scholar
Kwiatkowski da Silva, A, Ponge, D, Peng, Z, Inden, G, Lu, Y, Breen, A, Gault, B & Raabe, D (2018). Phase nucleation through confined spinodal fluctuations at crystal defects evidenced in Fe-Mn alloys. Nat Commun 9, 1137.CrossRefGoogle ScholarPubMed
Langmuir, I (1918). The adsorption of gases on plane surfaces of glass. J Am Chem Soc 40, 13611403.CrossRefGoogle Scholar
Larson, D, Prosa, T & Kelly, T (2013 a). Local Electrode Atom Probe Tomography—A User's Guide. New York: Springer.CrossRefGoogle Scholar
Larson, DJ, Gault, B, Geiser, BP, De Geuser, F & Vurpillot, F (2013 b). Atom probe tomography spatial reconstruction: Status and directions. Curr Opin Solid State Mater Sci 17, 236247.CrossRefGoogle Scholar
Larson, DJ, Prosa, TJ, Geiser, BP & Egelhoff, WF (2011). Effect of analysis direction on the measurement of interfacial mixing in thin metal layers with atom probe tomography. Ultramicroscopy 111, 506511.CrossRefGoogle ScholarPubMed
Lejcek, P (2010). Grain Boundary Segregation in Metals. Berlin: Springer.CrossRefGoogle Scholar
Lejček, P, Šob, M & Paidar, V (2017). Interfacial segregation and grain boundary embrittlement: An overview and critical assessment of experimental data and calculated results. Prog Mater Sci 87, 83139.CrossRefGoogle Scholar
Luo, J, Cheng, H, Asl, KM, Kiely, CJ & Harmer, MP (2011). The role of a bilayer interfacial phase on liquid metal embrittlement. Science 333, 17301733.CrossRefGoogle ScholarPubMed
Marquis, EA, Geiser, BP, Prosa, TJ & Larson, DJ (2011). Evolution of tip shape during field evaporation of complex multilayer structures. J Microsc 241, 225233.CrossRefGoogle ScholarPubMed
Marquis, EA & Hyde, JM (2010). Applications of atom-probe tomography to the characterisation of solute behaviours. Mater Sci, Eng R, Rep 69, 3762.CrossRefGoogle Scholar
Marquis, EA & Vurpillot, F (2008). Chromatic aberrations in the field evaporation behavior of small precipitates. Microsc Microanal 14, 561570.CrossRefGoogle ScholarPubMed
Martin, AJ, Weng, W, Zhu, Z, Loesing, R, Shaffer, J & Katnani, A (2016). Cross-sectional atom probe tomography sample preparation for improved analysis of fins on SOI. Ultramicroscopy 161, 105109.CrossRefGoogle Scholar
Maugis, P & Hoummada, K (2016). A methodology for the measurement of the interfacial excess of solute at a grain boundary. Scr Mater 120, 9093.CrossRefGoogle Scholar
McLean, D (1957). Grain Boundaries in Metals. Oxford: Clarendon Press.Google Scholar
Miller, MK & Forbes, RG (2014). Atom-Probe Tomography. Boston, MA: Springer US.CrossRefGoogle Scholar
Miller, MK & Hetherington, MG (1991). Local magnification effects in the atom probe. Surf Sci 246, 442449.CrossRefGoogle Scholar
Mistler, RE & Coble, RL (1974). Grain-boundary diffusion and boundary widths in metals and ceramics. J Appl Phys 45, 15071509.CrossRefGoogle Scholar
Mogensen, M, Sammes, NM & Tompsett, GA (2000). Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics 129, 6394.CrossRefGoogle Scholar
Pearson, K (1901). LIII. On lines and planes of closest fit to systems of points in space. Philos Mag J Sci 2, 559572.CrossRefGoogle Scholar
Peng, Z, Rohwerder, M, Choi, P-P, Gault, B, Meiners, T, Friedrichs, M, Kreilkamp, H, Klocke, F & Raabe, D (2017). Atomic diffusion induced degradation in bimetallic layer coated cemented tungsten carbide. Corros Sci 120, 113.CrossRefGoogle Scholar
Pennycook, SJ & Nellist, PD (Eds.) (2011). Scanning Transmission Electron Microscopy: Imaging and Analysis. New York, NY: Springer New York.CrossRefGoogle Scholar
Prokoshkina, D, Esin, VA, Wilde, G & Divinski, SV (2013). Grain boundary width, energy and self-diffusion in nickel: Effect of material purity. Acta Mater 61, 51885197.CrossRefGoogle Scholar
Raabe, D, Herbig, M, Sandlöbes, S, Li, Y, Tytko, D, Kuzmina, M, Ponge, D & Choi, P-P (2014). Grain boundary segregation engineering in metallic alloys: A pathway to the design of interfaces. Curr Opin Solid State Mater Sci 18, 253261.CrossRefGoogle Scholar
Ramgopal, T, Gouma, PI & Frankel, GS (2002). Role of grain-boundary precipitates and solute-depleted zone on the intergranular corrosion of aluminum alloy 7150. Corrosion 58, 687697.CrossRefGoogle Scholar
Rupert, TJ (2016). The role of complexions in metallic nano-grain stability and deformation. Curr Opin Solid State Mater Sci 20, 257267.CrossRefGoogle Scholar
Seah, MP (1980). Grain boundary segregation. J Phys F Met Phys 10, 10431064.CrossRefGoogle Scholar
Stephenson, LT, Moody, MP, Liddicoat, PV & Ringer, SP (2007). New techniques for the analysis of fine-scaled clustering phenomena within atom probe tomography (APT) data. Microsc Microanal 13, 448463.CrossRefGoogle ScholarPubMed
Talbot, E, Larde, R, Gourbilleau, F, Dufour, C & Pareige, P (2009). Si nanoparticles in SiO2: An atomic scale observation for optimization of optical devices. Epl 87, 26004.CrossRefGoogle Scholar
Thompson, K, Lawrence, D, Larson, DJ, Olson, JD, Kelly, TF & Gorman, B (2007). In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107, 131139.CrossRefGoogle ScholarPubMed
Thuvander, M & Andren, HO (2000). APFIM studies of grain and phase boundaries: A review. Mater Charact 44, 87100.CrossRefGoogle Scholar
Vurpillot, F, Bostel, A & Blavette, D (2000). Trajectory overlaps and local magnification in three-dimensional atom probe. Appl Phys Lett 76, 31273129.CrossRefGoogle Scholar
Vurpillot, F, Bostel, A, Cadel, E & Blavette, D (2000). The spatial resolution of 3D atom probe in the investigation of single-phase materials. Ultramicroscopy 84, 213224.CrossRefGoogle ScholarPubMed
Vurpillot, F, Gault, B, Geiser, BP & Larson, DJ (2013). Reconstructing atom probe data: A review. Ultramicroscopy 132, 1930.CrossRefGoogle ScholarPubMed
Vurpillot, F, Larson, D & Cerezo, A (2003). Improvement of multilayer analyses with a three-dimensional atom probe. Surf Interface Anal 36, 552558.CrossRefGoogle Scholar
Williams, DB & Carter, CB (2009). Transmission Electron Microscopy: A Textbook for Materials Science. Boston, MA: Springer US.CrossRefGoogle Scholar
Yao, L, Ringer, SP, Cairney, JM & Miller, MK (2013). The anatomy of grain boundaries: Their structure and atomic-level solute distribution. Scr Mater 69, 622625.CrossRefGoogle Scholar

Altmetric attention score


Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 16
Total number of PDF views: 196 *
View data table for this chart

* Views captured on Cambridge Core between 06th February 2019 - 4th December 2020. This data will be updated every 24 hours.

Hostname: page-component-b4dcdd7-zcwv2 Total loading time: 0.361 Render date: 2020-12-04T05:28:14.806Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Fri Dec 04 2020 04:59:14 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

An Automated Computational Approach for Complete In-Plane Compositional Interface Analysis by Atom Probe Tomography
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

An Automated Computational Approach for Complete In-Plane Compositional Interface Analysis by Atom Probe Tomography
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

An Automated Computational Approach for Complete In-Plane Compositional Interface Analysis by Atom Probe Tomography
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *