Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-662rr Total loading time: 0.407 Render date: 2022-05-25T21:57:43.527Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Bond Strength and Bioactivity of Zn-Doped Dental Adhesives Promoted by Load Cycling

Published online by Cambridge University Press:  11 December 2014

Manuel Toledano*
Affiliation:
Faculty of Dentistry, Dental Materials Section, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
Fátima S. Aguilera
Affiliation:
Faculty of Dentistry, Dental Materials Section, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
Estrella Osorio
Affiliation:
Faculty of Dentistry, Dental Materials Section, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
Inmaculada Cabello
Affiliation:
Faculty of Dentistry, Dental Materials Section, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
Manuel Toledano-Osorio
Affiliation:
Faculty of Dentistry, Dental Materials Section, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
Raquel Osorio
Affiliation:
Faculty of Dentistry, Dental Materials Section, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
*
*Corresponding author.toledano@ugr.es

Abstract

The purpose of this study was to evaluate if mechanical loading influences bioactivity and bond strength at the resin–dentin interface after bonding with Zn-doped etch-and-rinse adhesives. Dentin surfaces were subjected to demineralization by 37% phosphoric acid (PA) or 0.5 M ethylenediaminetetraacetic acid (EDTA). Single bond (SB) adhesive—3M ESPE—SB+ZnO particles 20 wt% and SB+ZnCl2 2 wt% were applied on treated dentin to create the groups PA+SB, SB+ZnO, SB+ZnCl2, EDTA+SB, EDTA+ZnO, and EDTA+ZnCl2. Bonded interfaces were stored in simulated body fluid for 24 h and tested or submitted to mechanical loading. Microtensile bond strength (MTBS) was assessed. Debonded dentin surfaces were studied by high-resolution scanning electron microscopy. Remineralization of the bonded interfaces was assessed by atomic force microscope imaging/nanoindentation, Raman spectroscopy/cluster analysis, and Masson’s trichrome staining. Load cycling (LC) produced reduction in MTBS in all PA+SB, and no change was encountered in EDTA+SB specimens, regardless of zinc doping. LC increased the mineralization and crystallographic maturity at the interface; a higher effect was noticed when using ZnO. Trichrome staining reflected a narrow demineralized dentin matrix after loading of dentin surfaces that were treated with SB-doped adhesives. This correlates with an increase in mineral platforms or plate-like multilayered crystals in PA or EDTA-treated dentin surfaces, respectively.

Type
Biological and Biomaterials Applications
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ager, J.W., Nalla, R.K., Breeden, K.L. & Ritchie, R.O. (2005). Deep-ultraviolet Raman spectroscopy study of the effect of aging on human cortical bone. J Biomed Opt 10, 034012.CrossRefGoogle ScholarPubMed
Almahdy, A., Downey, F.C., Sauro, S., Cook, R.J., Sherriff, M., Richards, D., Watson, T.F., Banerjee, A. & Festy, F. (2012). Microbiochemical analysis of carious dentin using Raman and fluorescence spectroscopy. Caries Res 46, 432440.CrossRefGoogle ScholarPubMed
Awonusi, A., Morris, M.D. & Tecklenburg, M.M. (2007). Carbonate assignment and calibration in the Raman spectrum of apatite. Calcif Tissue Int 81, 4652.CrossRefGoogle ScholarPubMed
Balooch, M., Habelitz, S., Kinney, J.H., Marshall, S.J. & Marshall, G.W. (2008). Mechanical properties of mineralized collagen fibrils as influenced by demineralization. J Struct Biol 162, 404410.CrossRefGoogle ScholarPubMed
Daood, U., Iqbal, K., Nitisusanta, L.I. & Fawzy, A.S. (2013). Effect of chitosan/riboflavin modification on resin/dentin interface: Spectroscopic and microscopic investigations. J Biomed Mater Res A 101, 18461856.CrossRefGoogle ScholarPubMed
De Munck, J., Van Meerbeek, B., Yoshida, Y., Inoue, S., Vargas, M., Suzuki, K., Lambrechts, P. & Vanherle, G. (2003). Four-year water degradation of total-etch adhesives bonded to dentin. J Dent Res 82, 136140.CrossRefGoogle Scholar
Erhardt, M.C., Osorio, R. & Toledano, M. (2008). Dentin treatment with MMPs inhibitors does not alter bond strengths to caries-affected dentin. J Dent 36, 10681073.CrossRefGoogle Scholar
Gandolfi, M.G., Taddei, P., Siboni, F., Modena, E., De Stefano, E.D., Prati, C. 2011). Biomimetic remineralization of human dentin using promising innovative calcium-silicate hybrid “smart” materials. Dent Mater 27, 10551069.CrossRefGoogle ScholarPubMed
Habelitz, S., Balooch, M., Marshall, S.J., Balooch, G. & Marshall, G.W. Jr. (2002). In situ atomic force microscopy of partially demineralized human dentin collagen fibrils. J Struct Biol 138, 227236.CrossRefGoogle ScholarPubMed
Jastrzebska, M., Wrzalik, R., Kocot, A., Zalewska-Rejdak, J. & Cwalina, B. (2003). Raman spectroscopic study of glutaraldehyde-stabilized collagen and pericardium tissue. J Biomater Sci Polym Ed 14, 185197.CrossRefGoogle ScholarPubMed
Karan, K., Yao, X., Xu, C. & Wang, Y. (2009). Chemical profile of the dentin substrate in non-carious cervical lesions. Dent Mater 25, 12051212.CrossRefGoogle ScholarPubMed
Koibuchi, H., Yasuda, N. & Nakabayashi, N. (2001). Bonding to dentin with a self-etching primer: The effect of smear layers. Dent Mater 17, 122126.CrossRefGoogle ScholarPubMed
Krajewski, A., Ravaglioli, A., Tinti, A., Taddei, P., Mazzocchi, M., Martinetti, R., Fagnano, C. & Fini, M. (2005). Comparison between the in vitro surface transformations of AP40 and RKKP bioactive glasses. J Mater Sci Mater Med 16, 119128.CrossRefGoogle ScholarPubMed
Kremer, E.A., Chen, Y., Suzuki, K., Nagase, H. & Gorski, J.P. (1998). Hydroxyapatite induces autolytic degradation and inactivation of matrix metalloproteinase-1 and -3. J Bone Miner Res 13, 18901902.CrossRefGoogle ScholarPubMed
Marshall, G.W. Jr., Marshall, S.J., Kinney, J.H. & Balooch, M. (1997). The dentin substrate: Structure and properties related to bonding. J Dent 25, 441458.CrossRefGoogle ScholarPubMed
Milly, H., Festy, F., Watson, T.F., Thompson, I. & Banerjee, A. (2014). Enamel white spot lesions can remineralise using bio-active glass and polyacrylic acid-modified bio-active glass powders. J Dent 42, 158166.CrossRefGoogle ScholarPubMed
Nakabayashi, N. (1992). The hybrid layer: A resin-dentin composite. Proc Finn Dent Soc 88(Suppl 1), 321329.Google ScholarPubMed
Nakabayashi, N., Kojima, K. & Masuhara, E. (1982). The promotion of adhesion by the infiltration of monomers into tooth substrates. J Biomed Mater Res 16, 265273.CrossRefGoogle ScholarPubMed
Nikaido, T., Kunzelmann, K.H., Chen, H., Ogata, M., Harada, N., Yamaguchi, S., Cox, C.F., Hickel, R. & Tagami, J. (2002). Evaluation of thermal cycling and mechanical loading on bond strength of a self-etching primer system to dentin. Dent Mater 18, 269275.CrossRefGoogle Scholar
Nudelman, F., Pieterse, K., George, A., Bomans, P.H., Friedrich, H., Brylka, L.J., Hilbers, P.A., De With, G. & Sommerdijk, N.A. (2010). The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater 9, 10041009.CrossRefGoogle ScholarPubMed
Osorio, R., Cabello, I. & Toledano, M. (2014). Bioactivity of zinc-doped dental adhesives. J Dent 42, 403412.CrossRefGoogle ScholarPubMed
Osorio, R., Yamauti, M., Osorio, E., Ruiz-Requena, M.E., Pashley, D., Tay, F. & Toledano, M. (2011). Effect of dentin etching and chlorhexidine application on metalloproteinase-mediated collagen degradation. Eur J Oral Sci 119, 7985.CrossRefGoogle ScholarPubMed
Pashley, D.H., Zhang, Y., Carvalho, R.M., Rueggeberg, F.A. & Russell, C.M. (2000). H+-induced tension development in demineralized dentin matrix. J Dent Res 79, 15791583.CrossRefGoogle ScholarPubMed
Prati, C., Chersoni, S. & Pashley, D.H. (1999). Effect of removal of surface collagen fibrils on resin-dentin bonding. Dent Mater 15, 323331.CrossRefGoogle ScholarPubMed
Prati, C., Pashley, D.H., Chersoni, S. & Mongiorgi, R. (2000). Marginal hybrid layer in class V restorations. Oper Dent 25, 228233.Google ScholarPubMed
Salehi, H., Terrer, E., Panayotov, I., Levallois, B., Jacquot, B., Tassery, H. & Cuisinier, F. (2013). Functional mapping of human sound and carious enamel and dentin with Raman spectroscopy. J Biophotonics 6, 765774.Google ScholarPubMed
Sauro, S., Osorio, R., Watson, T.F. & Toledano, M. (2012). Therapeutic effects of novel resin bonding systems containing bioactive glasses on mineral-depleted areas within the bonded-dentin interface. J Mater Sci Mater Med 23, 15211532.CrossRefGoogle Scholar
Schwartz, A.G., Pasteris, J.D., Genin, G.M., Daulton, T.L. & Thomopoulos, S. (2012). Mineral distributions at the developing tendon enthesis. PLoS One 7, e48630.CrossRefGoogle ScholarPubMed
Sell, D.R. & Monnier, V.M. (1989). Structure elucidation of a senescence cross-link from human extracellular matrix. Implication of pentoses in the aging process. J Biol Chem 264, 2159721602.Google ScholarPubMed
Toledano, M., Aguilera, F.S., Cabello, I. & Osorio, R. (2014 a). Remineralization of mechanical loaded resin-dentin interface: A transitional and synchronized multistep process. Biomech Model Mechanobiol 13, 12891302.CrossRefGoogle ScholarPubMed
Toledano, M., Aguilera, F.S., Sauro, S., Cabello, I., Osorio, E. & Osorio, R. (2014 b). Load cycling enhances bioactivity at the resin-dentin interface. Dent Mater 30, e169e188.CrossRefGoogle ScholarPubMed
Toledano, M., Cabello, I., Yamauti, M., Giannini, M., Aguilera, F.S., Osorio, E. & Osorio, R. (2012 a). Resistance to degradation of resin–dentin bonds produced by one-step self-etch adhesives. Microsc Microanal 18, 14801493.CrossRefGoogle ScholarPubMed
Toledano, M., Osorio, E., Aguilera, F.S., Sauro, S., Cabello, I. & Osorio, R. (2014 c). In vitro mechanical stimulation promoted remineralization at the resin/dentin interface. J Mech Behav Biomed Mater 30, 6174.CrossRefGoogle ScholarPubMed
Toledano, M., Osorio, R., Albaladejo, A., Aguilera, F.S., Tay, F.R. & Ferrari, M. (2006). Effect of cyclic loading on the microtensile bond strengths of total-etch and self-etch adhesives. Oper Dent 31, 2532.CrossRefGoogle ScholarPubMed
Toledano, M., Sauro, S., Cabello, I., Watson, T. & Osorio, R. (2013). A Zn-doped etch-and-rinse adhesive may improve the mechanical properties and the integrity at the bonded-dentin interface. Dent Mater 29, e142e152.CrossRefGoogle ScholarPubMed
Toledano, M., Yamauti, M., Ruiz-Requena, M.E. & Osorio, R. (2012 b). A ZnO-doped adhesive reduced collagen degradation favouring dentine remineralization. J Dent 40, 756765.CrossRefGoogle ScholarPubMed
Wang, C., Wang, Y., Huffman, N.T., Cui, C., Yao, X., Midura, S., Midura, R.J. & Gorski, J.P. (2009). Confocal laser Raman microspectroscopy of biomineralization foci in UMR 106 osteoblastic cultures reveals temporally synchronized protein changes preceding and accompanying mineral crystal deposition. J Biol Chem 284, 71007113.CrossRefGoogle ScholarPubMed
Xu, C. & Wang, Y. (2011). Cross-linked demineralized dentin maintains its mechanical stability when challenged by bacterial collagenase. J Biomed Mater Res B Appl Biomater 96, 242248.CrossRefGoogle ScholarPubMed
Xu, C. & Wang, Y. (2012). Collagen cross linking increases its biodegradation resistance in wet dentin bonding. J Adhes Dent 14, 1118.Google ScholarPubMed
15
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Bond Strength and Bioactivity of Zn-Doped Dental Adhesives Promoted by Load Cycling
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Bond Strength and Bioactivity of Zn-Doped Dental Adhesives Promoted by Load Cycling
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Bond Strength and Bioactivity of Zn-Doped Dental Adhesives Promoted by Load Cycling
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *