Hostname: page-component-5d59c44645-n6p7q Total loading time: 0 Render date: 2024-03-02T00:48:58.823Z Has data issue: false hasContentIssue false

Complex Defect in Pyrite and Its Structure Model Derived from Geometric Phase Analysis

Published online by Cambridge University Press:  18 June 2013

Péter Németh*
Affiliation:
Research Center for Natural Sciences, Institute of Materials and Environmental Chemistry, Hungarian Academy of Sciences, H-1025 Budapest, Pusztaszeri út 59-67, Hungary School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-1404, USA
István Dódony
Affiliation:
Department of Mineralogy, Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány 1/A, Hungary
Mihály Pósfai
Affiliation:
Department of Earth and Environmental Sciences, University of Pannonia, 8200 Veszprém, Egyetem utca 10, Hungary
Peter R. Buseck
Affiliation:
School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-1404, USA Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, USA
*
*Corresponding author. E-mail: pnemeth1@asu.edu
Get access

Abstract

New methods for defect analysis can lead to improved interpretation of experimental data and thus better understanding of material properties. Although transmission electron microscopy (TEM) has been used to study defects for many decades, interpretive ambiguities can arise for cases that seem simple or even trivial. Using geometric phase analysis (GPA), an image processing procedure, we show that an apparent simple line defect in pyrite has an entirely different character. It appears to be a b = ½[100] edge dislocation as viewed in a [001] high-resolution TEM (HRTEM) image, but the measured ux and uy displacements are asymmetric, which is inconsistent with a simple line dislocation. Instead, the defect is best understood as a terminating {101} marcasite slab in pyrite. The simulated HRTEM image based on this model reproduces the defect contrast and illustrates the power of GPA analysis for (1) avoiding potential pitfalls of misinterpreting apparently simple defects in HRTEM images, (2) detecting differences in elastic properties at the atomic scale, and (3) providing data for the positions of atom columns, thereby facilitating the construction of structure models for complex defects.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benbattouche, N., Saunders, G.A., Lambson, E.F. & Honle, W. (1989). The dependences of the elastic stiffness moduli and the Poisson ratio of natural iron pyrites FeS2 upon pressure and temperature. J Phys D Appl Phys 22(5), 670675.CrossRefGoogle Scholar
Buerger, M.J. (1931). The crystal structure of marcasite. Am Mineral 16(9), 361395.Google Scholar
Dódony, I., Pósfai, M. & Buseck, P.R. (1996). Structural relationship between pyrite and marcasite. Am Mineral 81(1-2), 119125.CrossRefGoogle Scholar
Hirth, J.P. & Lothe, J. (1982). Theory of Dislocations. New York: Wiley.Google Scholar
Hüe, F., Johnson, L.C., Lartigue-Korinek, S., Wang, G., Buseck, P.R. & Hÿtch, M.J. (2005). Calibration of projector lens distorsions. J Electron Microsc 54(3), 181190.Google Scholar
Hÿtch, M.J., Putaux, J.L. & Penisson, J.M. (2003). Measurement of the displacement field of dislocations to 0.03 angstrom by electron microscopy. Nature 423(6937), 270273.CrossRefGoogle Scholar
Hÿtch, M.J., Snoeck, E. & Kilaas, R. (1998). Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74(3), 131146.CrossRefGoogle Scholar
Johnson, C.L., Hÿtch, M.J. & Buseck, P.R. (2004a). Displacement and strain fields around a [100] dislocation in olivine measured to sub-angstrom accuracy. Am Mineral 89(10), 13741379.CrossRefGoogle Scholar
Johnson, C.L., Hÿtch, M.J. & Buseck, P.R. (2004b). Nanoscale waviness of low-angle grain boundaries. Proc Natl Acad Sci USA 101(52), 1793617939.CrossRefGoogle ScholarPubMed
Kret, S., Dluzewski, P. & Sobczak, E. (2000). Measurement of dislocation core distribution by digital processing of high-resolution transmission electron microscopy micrographs: A new technique for studying defects. J Phys Condens Matter 12(49), 1031310318.CrossRefGoogle Scholar
Kret, S., Ruterana, P., Rosenauer, A. & Gerthsen, D. (2001). Extracting quantitative information from high resolution electron microscopy. Phys Status Solidi B-Basic Research 227(1), 247295.3.0.CO;2-F>CrossRefGoogle Scholar
Murowchick, J.B. & Barnes, H.L. (1986). Marcasite precipitation from hydrothermal solutions. Geochim Cosmochim Acta 50(12), 26152629.CrossRefGoogle Scholar
Nabarro, F.R.N. (1947). Dislocations in a simple cubic lattice. Proc Phys Soc Lond 59(332), 256272.CrossRefGoogle Scholar
Nakamura, D., Gunjishima, I., Yamaguchi, S., Ito, T., Okamoto, A., Kondo, H., Onda, S. & Takatori, K. (2004). Ultrahigh-quality silicon carbide single crystals. Nature 430(7003), 10091012.CrossRefGoogle ScholarPubMed
Ng, W.L., Lourenco, M.A., Gwilliam, R.M., Ledain, S., Shao, G. & Homewood, K.P. (2001). An efficient room-temperature silicon-based light-emitting diode. Nature 410(6825), 192194.CrossRefGoogle ScholarPubMed
Peierls, R. (1940). The size of a dislocation. Proc Phys Soc 52, 3437.CrossRefGoogle Scholar
Schiotz, J., Di Tolla, F.D. & Jacobsen, K.W. (1998). Softening of nanocrystalline metals at very small grain sizes. Nature 391(6667), 561563.CrossRefGoogle Scholar
Vajargah, S.H., Couillard, M., Cui, K., Tavakoli, S.G., Robinson, B., Kleiman, R.N., Preston, J.S. & Botton, G.A. (2011). Strain relief and AlSb buffer layer morphology in GaSb heteroepitaxial films grown on Si as revealed by high-angle annular dark-field scanning transmission electron microscopy. Appl Phys Lett 98(8), 082113-1–3.CrossRefGoogle Scholar
You, J.H., Lu, J.-Q. & Johnson, H.T. (2008). Atomistically informed electrostatic model of an edge dislocation in a complex crystalline material. Math Mech Solids 13(3-4), 267291.Google Scholar
Zhao, C.W., Xing, Y.M. & Bai, P.C. (2008a). Experimental examination of displacement field in an edge dislocation core in aluminum. Phys Lett A 372(3), 312315.CrossRefGoogle Scholar
Zhao, C.W., Xing, Y.M., Zhou, C.E. & Bai, P.C. (2008b). Experimental examination of displacement and strain fields in an edge dislocation core. Acta Mater 56(11), 25702575.CrossRefGoogle Scholar