Skip to main content Accessibility help
Hostname: page-component-684bc48f8b-ttgcf Total loading time: 2.669 Render date: 2021-04-13T11:14:13.428Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Imaging and Analysis of Cellular Locations in Three-Dimensional Tissue Models

Published online by Cambridge University Press:  11 March 2019

Warren Colomb
Department of Physics, Colorado School of Mines, Golden, Colorado, USA
Matthew Osmond
Department of Chemical & Biological Engineering, Colorado School of Mines, Golden, Colorado, USA
Charles Durfee
Department of Physics, Colorado School of Mines, Golden, Colorado, USA
Melissa D. Krebs
Department of Chemical & Biological Engineering, Colorado School of Mines, Golden, Colorado, USA
Susanta K. Sarkar
Department of Physics, Colorado School of Mines, Golden, Colorado, USA
E-mail address:


The absence of quantitative in vitro cell–extracellular matrix models represents an important bottleneck for basic research and human health. Randomness of cellular distributions provides an opportunity for the development of a quantitative in vitro model. However, quantification of the randomness of random cell distributions is still lacking. In this paper, we have imaged cellular distributions in an alginate matrix using a multiview light sheet microscope and developed quantification metrics of randomness by modeling it as a Poisson process, a process that has constant probability of occurring in space or time. We imaged fluorescently labeled human mesenchymal stem cells embedded in an alginate matrix of thickness greater than 5 mm with $\sim\! {\rm 2}{\rm. 9} \pm {\rm 0}{\rm. 4}\,\mu {\rm m}$ axial resolution, the mean full width at half maximum of the axial intensity profiles of fluorescent particles. Simulated randomness agrees well with the experiments. Quantification of distributions and validation by simulations will enable quantitative study of cell–matrix interactions in tissue models.

Biological Applications
Copyright © Microscopy Society of America 2019 

Access options

Get access to the full version of this content by using one of the access options below.


Ahrens, MB, Orger, MB, Robson, DN, Li, JM & Keller, PJ (2013). Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat Methods 10, 413420.10.1038/nmeth.2434CrossRefGoogle ScholarPubMed
Alexander, N, Moyeed, R & Stander, J (2000). Spatial modelling of individual-level parasite counts using the negative binomial distribution. Biostatistics 1, 453463.10.1093/biostatistics/1.4.453CrossRefGoogle ScholarPubMed
Andersen, T, Auk-Emblem, P & Dornish, M (2015). 3D cell culture in alginate hydrogels. Microarrays 4, 133161.10.3390/microarrays4020133CrossRefGoogle ScholarPubMed
Andrey, P, Kiêu, K, Kress, C, Lehmann, G, Tirichine, L, Liu, Z, Biot, E, Adenot, P-G, Hue-Beauvais, C & Houba-Hérin, N (2010). Statistical analysis of 3D images detects regular spatial distributions of centromeres and chromocenters in animal and plant nuclei. PLoS Comput Biol 6, e1000853.10.1371/journal.pcbi.1000853CrossRefGoogle ScholarPubMed
Baddeley, A, Moyeed, R, Howard, C & Boyde, A (1993). Analysis of a three-dimensional point pattern with replication. Appl Stat 4, 641668.10.2307/2986181CrossRefGoogle Scholar
Baddeley, A, Rubak, E & Turner, R (2015). Spatial Point Patterns: Methodology and Applications with R. Florida, USA: CRC Press.10.1201/b19708CrossRefGoogle Scholar
Barkai, N & Leibler, S (2000). Biological rhythms: Circadian clocks limited by noise. Nature 403, 267268.10.1038/35002258CrossRefGoogle ScholarPubMed
Beaurepaire, E (2014). Laboratoire Optique et Biosciences-Two-photon light sheet microscopy (2P-SPIM). Nat Methods 11, 600601.Google Scholar
Berg, OG, Paulsson, J & Ehrenberg, M (2000). Fluctuations and quality of control in biological cells: Zero-order ultrasensitivity reinvestigated. Biophys J 79, 12281236.10.1016/S0006-3495(00)76377-6CrossRefGoogle ScholarPubMed
Bidarra, SJ & Barrias, CC (2018). 3D Culture of Mesenchymal Stem Cells in Alginate Hydrogels. In: Methods in Molecular Biology. New York, USA: Humana Press.Google Scholar
Bielecka, ZF, Maliszewska-Olejniczak, K, Safir, IJ, Szczylik, C & Czarnecka, AM (2017). Three-dimensional cell culture model utilization in cancer stem cell research. Biol Rev 92, 15051520.10.1111/brv.12293CrossRefGoogle ScholarPubMed
Breslin, S & O'Driscoll, L (2013). Three-dimensional cell culture: The missing link in drug discovery. Drug Discov Today 18, 240249.10.1016/j.drudis.2012.10.003CrossRefGoogle ScholarPubMed
Bumb, A, Sarkar, SK, Wu, XS, Brechbiel, MW & Neuman, KC (2011). Quantitative characterization of fluorophores in multi-component nanoprobes by single-molecule fluorescence. Biomed Opt Express 2, 27612769.10.1364/BOE.2.002761CrossRefGoogle ScholarPubMed
Caló, E & Khutoryanskiy, VV (2015). Biomedical applications of hydrogels: A review of patents and commercial products. Eur Polym J 65, 252267.10.1016/j.eurpolymj.2014.11.024CrossRefGoogle Scholar
Chen, B-C, Legant, WR, Wang, K, Shao, L, Milkie, DE, Davidson, MW, Janetopoulos, C, Wu, XS, Hammer, JA & Liu, Z (2014). Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution. Science 346, 1257998.10.1126/science.1257998CrossRefGoogle ScholarPubMed
Chung, K & Deisseroth, K (2013). CLARITY for mapping the nervous system. Nat Methods 10, 508513.10.1038/nmeth.2481CrossRefGoogle ScholarPubMed
Dean, KM & Fiolka, R (2014). Uniform and scalable light-sheets generated by extended focusing. Opt Express 22, 2614126152.10.1364/OE.22.026141CrossRefGoogle ScholarPubMed
Decaestecker, C, Debeir, O, Van Ham, P & Kiss, R (2007). Can anti-migratory drugs be screened in vitro? A review of 2D and 3D assays for the quantitative analysis of cell migration. Med Res Rev 27, 149176.10.1002/med.20078CrossRefGoogle ScholarPubMed
Diggle, PJ (2013). Statistical Analysis of Spatial and Spatio-Temporal Point Patterns. Florida, USA: CRC Press.10.1201/b15326CrossRefGoogle Scholar
Elliott, NT & Yuan, F (2011). A review of three-dimensional in vitro tissue models for drug discovery and transport studies. J Pharm Sci 100, 5974.10.1002/jps.22257CrossRefGoogle ScholarPubMed
Fahrbach, FO, Voigt, FF, Schmid, B, Helmchen, F & Huisken, J (2013). Rapid 3D light-sheet microscopy with a tunable lens. Opt Express 21, 2101021026.10.1364/OE.21.021010CrossRefGoogle ScholarPubMed
Gao, L, Shao, L, Chen, B-C & Betzig, E (2014). 3D live fluorescence imaging of cellular dynamics using Bessel beam plane illumination microscopy. Nat Protoc 9, 10831101.10.1038/nprot.2014.087CrossRefGoogle ScholarPubMed
Gillespie, DT (1977). Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81, 23402361.10.1021/j100540a008CrossRefGoogle Scholar
Green, RH (1966). Measurement of non-randomness in spatial distributions. Res Popul Ecol (Kyoto) 8, 17.10.1007/BF02524740CrossRefGoogle Scholar
Hama, H, Kurokawa, H, Kawano, H, Ando, R, Shimogori, T, Noda, H, Fukami, K, Sakaue-Sawano, A & Miyawaki, A (2011). Scale: A chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat Neurosci 14, 14811488.10.1038/nn.2928CrossRefGoogle ScholarPubMed
Hinderer, S, Layland, SL & Schenke-Layland, K (2016). ECM and ECM-like materials—biomaterials for applications in regenerative medicine and cancer therapy. Adv Drug Delivery Rev 97, 260269.10.1016/j.addr.2015.11.019CrossRefGoogle ScholarPubMed
Horton, NG, Wang, K, Kobat, D, Clark, CG, Wise, FW, Schaffer, CB & Xu, C (2013). In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat Photonics 7, 205209.10.1038/nphoton.2012.336CrossRefGoogle ScholarPubMed
Huang, F, Sirinakis, G, Allgeyer, ES, Schroeder, LK, Duim, WC, Kromann, EB, Phan, T, Rivera-Molina, FE, Myers, JR & Irnov, I (2016). Ultra-high resolution 3D imaging of whole cells. Cell 166, 10281040.CrossRefGoogle ScholarPubMed
Illian, J, Penttinen, A, Stoyan, H & Stoyan, D (2008). Statistical Analysis and Modelling of Spatial Point Patterns. New Jersey, USA: John Wiley & Sons.Google Scholar
Keller, PJ & Dodt, H-U (2012). Light sheet microscopy of living or cleared specimens. Curr Opin Neurobiol 22, 138143.10.1016/j.conb.2011.08.003CrossRefGoogle ScholarPubMed
Keller, PJ, Schmidt, AD, Santella, A, Khairy, K, Bao, Z, Wittbrodt, J & Stelzer, EH (2010). Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy. Nat Methods 7, 637642.10.1038/nmeth.1476CrossRefGoogle ScholarPubMed
Keller, PJ, Schmidt, AD, Wittbrodt, J & Stelzer, EH (2008). Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322, 10651069.CrossRefGoogle ScholarPubMed
König, K (2000). Multiphoton microscopy in life sciences. J Microsc 200, 83104.10.1046/j.1365-2818.2000.00738.xCrossRefGoogle ScholarPubMed
Krzic, U, Gunther, S, Saunders, TE, Streichan, SJ & Hufnagel, L (2012). Multiview light-sheet microscope for rapid in toto imaging. Nat Methods 9, 730733.CrossRefGoogle ScholarPubMed
Levene, MJ, Dombeck, DA, Kasischke, KA, Molloy, RP & Webb, WW (2004). In vivo multiphoton microscopy of deep brain tissue. J Neurophysiol 91, 19081912.CrossRefGoogle ScholarPubMed
Mahou, P, Vermot, J, Beaurepaire, E & Supatto, W (2014). Multicolor two-photon light-sheet microscopy. Nat Methods 11, 600601.10.1038/nmeth.2963CrossRefGoogle ScholarPubMed
Maia, FR, Fonseca, KB, Rodrigues, G, Granja, PL & Barrias, CC (2014). Matrix-driven formation of mesenchymal stem cell–extracellular matrix microtissues on soft alginate hydrogels. Acta Biomater 10, 31973208.10.1016/j.actbio.2014.02.049CrossRefGoogle ScholarPubMed
Marycz, K, Szarek, D, Grzesiak, J & Wrzeszcz, K (2014). Influence of modified alginate hydrogels on mesenchymal stem cells and olfactory bulb-derived glial cells cultures. Bio-Med Mater Eng 24, 16251637.CrossRefGoogle ScholarPubMed
Mertz, J (2011). Optical sectioning microscopy with planar or structured illumination. Nat Methods 8, 811819.10.1038/nmeth.1709CrossRefGoogle ScholarPubMed
Mertz, J & Kim, J (2010) Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection. J Biomed Opt 15, 016027-1–016027-7.CrossRefGoogle ScholarPubMed
Mlodzianoski, MJ, Juette, MF, Beane, GL & Bewersdorf, J (2009). Experimental characterization of 3D localization techniques for particle-tracking and super-resolution microscopy. Opt Express 17, 82648277.CrossRefGoogle ScholarPubMed
Nicodemus, GD & Bryant, SJ (2008). Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng, Part B 14, 149165.10.1089/ten.teb.2007.0332CrossRefGoogle ScholarPubMed
Ozbudak, EM, Thattai, M, Kurtser, I, Grossman, AD & Van Oudenaarden, A (2002). Regulation of noise in the expression of a single gene. Nat Genet 31, 6973.10.1038/ng869CrossRefGoogle ScholarPubMed
Pan, C, Cai, R, Quacquarelli, FP, Ghasemigharagoz, A, Lourbopoulos, A, Matryba, P, Plesnila, N, Dichgans, M, Hellal, F & Ertürk, A (2016). Shrinkage-mediated imaging of entire organs and organisms using uDISCO. Nat Methods 13, 859867.CrossRefGoogle ScholarPubMed
Pertuz, S, Puig, D, Garcia, MA & Fusiello, A (2013). Generation of all-in-focus images by noise-robust selective fusion of limited depth-of-field images. IEEE Trans Image Process 22, 12421251.10.1109/TIP.2012.2231087CrossRefGoogle ScholarPubMed
Pittenger, MF, Mackay, AM, Beck, SC, Jaiswal, RK, Douglas, R, Mosca, JD, Moorman, MA, Simonetti, DW, Craig, S & Marshak, DR (1999). Multilineage potential of adult human mesenchymal stem cells. Science 284, 143147.10.1126/science.284.5411.143CrossRefGoogle ScholarPubMed
Planchon, TA, Gao, L, Milkie, DE, Davidson, MW, Galbraith, JA, Galbraith, CG & Betzig, E (2011). Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat Methods 8, 417423.CrossRefGoogle ScholarPubMed
Preibisch, S, Saalfeld, S, Schindelin, J & Tomancak, P (2010). Software for bead-based registration of selective plane illumination microscopy data. Nat Methods 7, 418419.10.1038/nmeth0610-418CrossRefGoogle ScholarPubMed
Preibisch, S, Saalfeld, S & Tomancak, P (2009). Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25, 14631465.CrossRefGoogle ScholarPubMed
Qiao, S-P, Zhao, Y-F, Li, C-F, Yin, Y-B, Meng, Q-Y, Lin, F-H, Liu, Y, Hou, X-L, Guo, K & Chen, X-B (2016). An alginate-based platform for cancer stem cell research. Acta Biomater 37, 8392.10.1016/j.actbio.2016.04.032CrossRefGoogle ScholarPubMed
Ragan, T, Kadiri, LR, Venkataraju, KU, Bahlmann, K, Sutin, J, Taranda, J, Arganda-Carreras, I, Kim, Y, Seung, HS & Osten, P (2012). Serial two-photon tomography for automated ex vivo mouse brain imaging. Nat Methods 9, 255258.10.1038/nmeth.1854CrossRefGoogle ScholarPubMed
Reynaud, EG, Kržič, U, Greger, K & Stelzer, EH (2008). Light sheet-based fluorescence microscopy: More dimensions, more photons, and less photodamage. HFSP J 2, 266275.10.2976/1.2974980CrossRefGoogle ScholarPubMed
Ripley, BD (1976). The second-order analysis of stationary point processes. J Appl Probab 13, 255266.10.2307/3212829CrossRefGoogle Scholar
Ripley, BD (1977). Modelling spatial patterns. Journal of the Royal Statistical Society. Series B (Methodological) 1977 (Jan 1), 172212.10.1111/j.2517-6161.1977.tb01615.xCrossRefGoogle Scholar
Ritter, JG, Spille, J-H, Kaminski, T & Kubitscheck, U (2011). A cylindrical zoom lens unit for adjustable optical sectioning in light sheet microscopy. Biomed Opt Express 2, 185193.10.1364/BOE.2.000185CrossRefGoogle Scholar
Ritter, JG, Veith, R, Veenendaal, A, Siebrasse, JP & Kubitscheck, U (2010). Light sheet microscopy for single molecule tracking in living tissue. PLoS ONE 5, e11639.10.1371/journal.pone.0011639CrossRefGoogle ScholarPubMed
Robinson, BK, Cortes, E, Rice, AJ, Sarper, M & del Río Hernández, A (2016). Quantitative analysis of 3D extracellular matrix remodelling by pancreatic stellate cells. Biol Open 0, 18. doi:10.1242/bio.017632.Google Scholar
Rodriguez, A, Ehlenberger, D, Kelliher, K, Einstein, M, Henderson, SC, Morrison, JH, Hof, PR & Wearne, SL (2003). Automated reconstruction of three-dimensional neuronal morphology from laser scanning microscopy images. Methods 30, 94105.CrossRefGoogle ScholarPubMed
Rowley, JA, Madlambayan, G & Mooney, DJ (1999). Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20, 4553.CrossRefGoogle ScholarPubMed
Ruedinger, F, Lavrentieva, A, Blume, C, Pepelanova, I & Scheper, T (2015). Hydrogels for 3D mammalian cell culture: A starting guide for laboratory practice. Appl Microbiol Biotechnol 99, 623636.10.1007/s00253-014-6253-yCrossRefGoogle ScholarPubMed
Sarkar, SK (2016). Single Molecule Biophysics and Poisson Process Approach to Statistical Mechanics. California, USA: Morgan & Claypool Publishers.10.1088/978-1-6817-4116-1CrossRefGoogle Scholar
Sbalzarini, IF & Koumoutsakos, P (2005). Feature point tracking and trajectory analysis for video imaging in cell biology. J Struct Biol 151, 182195.10.1016/j.jsb.2005.06.002CrossRefGoogle ScholarPubMed
Shapiro, L & Cohen, S (1997). Novel alginate sponges for cell culture and transplantation. Biomaterials 18, 583590.CrossRefGoogle ScholarPubMed
Silvestri, L, Allegra Mascaro, AL, Costantini, I, Sacconi, L & Pavone, FS (2014). Correlative two-photon and light sheet microscopy. Methods 66, 268272.10.1016/j.ymeth.2013.06.013CrossRefGoogle ScholarPubMed
Summers, HD, Wills, JW, Brown, MR & Rees, P (2015). Poisson-event-based analysis of cell proliferation. Cytometry Part A 87, 385392.10.1002/cyto.a.22620CrossRefGoogle ScholarPubMed
Susaki, EA, Tainaka, K, Perrin, D, Kishino, F, Tawara, T, Watanabe, TM, Yokoyama, C, Onoe, H, Eguchi, M & Yamaguchi, S (2014). Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell 157, 726739.CrossRefGoogle ScholarPubMed
Tibbitt, MW & Anseth, KS (2009). Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng 103, 655663.10.1002/bit.22361CrossRefGoogle ScholarPubMed
Till, JE, McCulloch, EA & Siminovitch, L (1964). A stochastic model of stem cell proliferation, based on the growth of spleen colony-forming cells. Proc Natl Acad Sci USA 51, 2936.CrossRefGoogle ScholarPubMed
Tinevez, J-Y, Perry, N, Schindelin, J, Hoopes, GM, Reynolds, GD, Laplantine, E, Bednarek, SY, Shorte, SL & Eliceiri, KW (2017). Trackmate: An open and extensible platform for single-particle tracking. Methods 115, 8090.10.1016/j.ymeth.2016.09.016CrossRefGoogle ScholarPubMed
Tomer, R, Khairy, K, Amat, F & Keller, PJ (2012). Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy. Nat Methods 9, 755763.CrossRefGoogle ScholarPubMed
Tsimring, LS (2014). Noise in biology. Rep Prog Phys 77, 026601.10.1088/0034-4885/77/2/026601CrossRefGoogle ScholarPubMed
Vettenburg, T, Dalgarno, HI, Nylk, J, Coll-Lladó, C, Ferrier, DE, Čižmár, T, Gunn-Moore, FJ & Dholakia, K (2014). Light-sheet microscopy using an Airy beam. Nat Methods 11, 541544.10.1038/nmeth.2922CrossRefGoogle ScholarPubMed
Wearne, S, Rodriguez, A, Ehlenberger, D, Rocher, A, Henderson, S & Hof, P (2005). New techniques for imaging, digitization and analysis of three-dimensional neural morphology on multiple scales. Neuroscience 136, 661680.CrossRefGoogle ScholarPubMed
Weber, M, Mickoleit, M & Huisken, J (2013). Light sheet microscopy. Methods Cell Biol 123, 193215.10.1016/B978-0-12-420138-5.00011-2CrossRefGoogle Scholar
Weiswald, L-B, Bellet, D & Dangles-Marie, V (2015). Spherical cancer models in tumor biology. Neoplasia 17, 115.CrossRefGoogle ScholarPubMed
Wu, Y, Wawrzusin, P, Senseney, J, Fischer, RS, Christensen, R, Santella, A, York, AG, Winter, PW, Waterman, CM & Bao, Z (2013). Spatially isotropic four-dimensional imaging with dual-view plane illumination microscopy. Nat Biotechnol 31, 10321038.CrossRefGoogle ScholarPubMed
Yang, X, Sarvestani, SK, Moeinzadeh, S, He, X & Jabbari, E (2012). Three-dimensional-engineered matrix to study cancer stem cells and tumorsphere formation: Effect of matrix modulus. Tissue Eng, Part A 19, 669684.10.1089/ten.tea.2012.0333CrossRefGoogle ScholarPubMed
Zipfel, WR, Williams, RM & Webb, WW (2003). Nonlinear magic: Multiphoton microscopy in the biosciences. Nat Biotechnol 21, 13691377.10.1038/nbt899CrossRefGoogle ScholarPubMed

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 40
Total number of PDF views: 106 *
View data table for this chart

* Views captured on Cambridge Core between 11th March 2019 - 13th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Imaging and Analysis of Cellular Locations in Three-Dimensional Tissue Models
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Imaging and Analysis of Cellular Locations in Three-Dimensional Tissue Models
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Imaging and Analysis of Cellular Locations in Three-Dimensional Tissue Models
Available formats

Reply to: Submit a response

Your details

Conflicting interests

Do you have any conflicting interests? *