Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-17T17:37:31.343Z Has data issue: false hasContentIssue false

The Importance of Averaging to Interpret Electron Correlographs of Disordered Materials

Published online by Cambridge University Press:  19 February 2014

Tao Sun*
Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
Michael M.J. Treacy
Department of Physics, Arizona State University, Tempe, AZ 85287, USA
Tian Li
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
Nestor J. Zaluzec
Electron Microscopy Center, Argonne National Laboratory, Argonne, IL 60439, USA
J. Murray Gibson*
Department of Physics, Northeastern University, Boston, MA 02115, USA
*Corresponding author.;
*Corresponding author.;
Get access


The development of effective new tools for structural characterization of disordered materials and systems is becoming increasingly important as such tools provide the key to understanding, and ultimately controlling, their properties. The relatively novel technique of correlograph analysis (i.e., the approach of calculating angular autocorrelations within diffraction patterns) promises unique advantages for probing the local symmetries of disordered structures. Because correlograph analysis examines a component of the high-order four-body correlation function, it is more sensitive to medium-range ordering than conventional diffraction methods. As a follow-up of our previous publication, where we studied thin samples of sputtered amorphous silicon, we describe here the practical experimental method and common systematic errors of electron correlograph analysis. Using both experimental data and numerical simulations, we demonstrate that reliable structural information about the sample can only be extracted from the mean correlograph averaged over a sufficient number of individual results.

Materials Applications
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Altarelli, M., Kurta, R.R. & Vartanyants, I.A. (2010). X-ray crosscorrelation analysis and local symmetries of disordered systems: General theory. Phys Rev B 82(10), 104207.Google Scholar
Cheng, Y.Q. & Ma, E. (2011). Atomic-level structure and structure-property relationship in metallic glasses. Prog Mater Sci 56(4), 379473.CrossRefGoogle Scholar
Clark, N.A., Ackerson, B.J. & Hurd, A.J. (1983). Multidetector scattering as a probe of local structure in disordered phases. Phys Rev Lett 50(9), 14591462.CrossRefGoogle Scholar
Gibson, J.M., Treacy, M.M.J., Sun, T. & Zaluzec, N.J. (2010). Substantial crystalline topology in amorphous silicon. Phys Rev Lett 105(12), 125504.Google Scholar
Gibson, J.M., Treacy, M.M.J. & Voyles, P.M. (2000). Atom pair persistence in disordered materials from fluctuation microscopy. Ultramicroscopy 83(3–4), 169178.Google Scholar
Howie, A., McGill, C.A. & Rodenburg, J.M. (1985). Intensity correlations in microdiffraction from “amorphous” materials. J De Phys 46(C9), 5962.Google Scholar
Kam, Z. (1977). Determination of macromolecular structure in solution by spatial correlation of scattering fluctuations. Macromolecules 10(5), 927934.CrossRefGoogle Scholar
Kurta, R.P., Altarelli, M., Weckert, E. & Vartanyants, I.A. (2012). X-ray autocorrelation analysis applied to disordered two-dimensional systems. Phys Rev B 85(18), 184204.Google Scholar
Lee, B.S., Burr, G.W., Shelby, R.M., Raoux, S., Rettner, C.T., Bogle, S.N., Darmawikarta, K., Bishop, S.G. & Abelson, J.R. (2009). Observation of the role of subcritical nuclei in crystallization of a glassy solid. Science 326(5955), 980984.CrossRefGoogle ScholarPubMed
Liu, A.C.Y., Neish, M.J., Stokol, G., Buckley, G.A., Smillie, L.A., de Jonge, M.D., Ott, R.T., Kramer, M.J. & Bourgeois, L. (2013). Systematic mapping of icosahedral short-range order in a melt-spun Zr36Cu64 metallic glass. Phys Rev Lett 110(20), 205505.Google Scholar
Reichert, H., Klein, O., Dosch, H., Denk, M., Honkimaki, V., Lippmann, T. & Reiter, G. (2000). Observation of five-fold local symmetry in liquid lead. Nature 408(6814), 839841.Google Scholar
Sheng, H.W., Luo, W.K., Alamgir, F.M., Bai, J.M. & Ma, E. (2006). Atomic packing and short-to-medium-range order in metallic glasses. Nature 439(7075), 419425.Google Scholar
Shintani, H. & Tanaka, H. (2006). Frustration on the way to crystallization in glass. Nat Phys 2(3), 200206.CrossRefGoogle Scholar
Su, R., Seu, K.A., Parks, D., Kan, J.J., Fullerton, E.E., Roy, S. & Kevan, S.D. (2011). Emergent rotational symmetries in disordered magnetic domain patterns. Phys Rev Lett 107(25), 257204.CrossRefGoogle ScholarPubMed
Treacy, M.M.J. & Borisenko, K.B. (2012). The local structure of amorphous silicon. Science 335(6071), 950953.CrossRefGoogle ScholarPubMed
Treacy, M.M.J., Gibson, J.M., Fan, L., Paterson, D.J. & McNulty, I. (2005). Fluctuation microscopy: A probe of medium range order. Rep Prog Phys 68(12), 28992944.CrossRefGoogle Scholar
Voyles, P.M. & Muller, D.A. (2002). Fluctuation microscopy in the STEM. Ultramicroscopy 93(2), 147159.CrossRefGoogle ScholarPubMed
Wochner, P., Castro-Colin, M., Bogle, S.N. & Bugaev, V.N. (2011). Of fluctuations and autocorrelations: Finding order in disorder. Inter J Mater Res 102(7), 874888.CrossRefGoogle Scholar
Wochner, P., Gutt, C., Authrieth, T., Demmer, T., Bugaev, V., Ortiz, A.D., Duri, A., Zontone, F., Gruel, G. & Dosch, H. (2009). X-ray cross correlation analysis uncovers hidden local symmetries in disordered matter. PNAS 106(28), 1151111514.CrossRefGoogle ScholarPubMed
Yan, A., Sun, T., Borisenko, K.B., Buchholz, D.B., Chang, R.P.H., Kirkland, A.I. & Dravid, V.P. (2012). Multi-scale order in amorphous transparent oxide thin films. J Appl Phys 112, 054907.Google Scholar