Skip to main content Accessibility help
×
Home
Hostname: page-component-684bc48f8b-v5sh4 Total loading time: 3.724 Render date: 2021-04-11T09:31:59.340Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Practical Experience with Hole-Free Phase Plates for Cryo Electron Microscopy

Published online by Cambridge University Press:  24 November 2016

Michael Marko
Affiliation:
NY State Department of Health, Wadsworth Center, PO Box 509, Albany, NY 12201, USA College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA
Chyongere Hsieh
Affiliation:
NY State Department of Health, Wadsworth Center, PO Box 509, Albany, NY 12201, USA
Eric Leith
Affiliation:
Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
David Mastronarde
Affiliation:
Department of MCD Biology, University of Colorado Boulder, Boulder, CO 80309, USA
Sohei Motoki
Affiliation:
JEOL USA, 11 Dearborn Road, Peabody, MA 01960, USA
Corresponding
E-mail address:

Abstract

Phase plate (PP) imaging has proven to be valuable in transmission cryo electron microscopy of unstained, native-state biological specimens. Many PP types have been described, however until the recent implementation of the “hole-free” phase plate (HFPP), imaging has been challenging. We found the HFPP to be simple to construct and to set up in the transmission electron microscopy, but care in implementing automated data collection is needed. Performance may be variable, both initially and over time, thus it is important to monitor and evaluate image quality by observing the power spectrum. We found that while some HFPPs gave transfer to high resolution without CTF oscillation, most reached high resolution when operated with modest defocus.

Type
Instrumentation and Software Techniques
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below.

References

Danev, R. & Baumeister, W. (2016). Cryo-EM single particle analysis with the Volta phase plate. Elife, 5. pii: e13046. doi: 10.7554/eLife.13046.CrossRefGoogle Scholar
Danev, R., Buijsse, B., Khosouei, M., Plitzko, J.M. & Baumeister, W. (2014). Volta potential phase plate for in-focus phase contrast transmission electron microscopy. Proc Nat Acad Sci U S A 111, 1563515640.CrossRefGoogle ScholarPubMed
Danev, R., Glaeser, R.M. & Nagayama, K. (2009). Practical factors affecting the performance of a thin-film phase plate for transmission electron microscopy. Ultramicroscopy 109, 312325.CrossRefGoogle ScholarPubMed
Glaeser, R.M. (2013). Methods for imaging weak-phase objects in electron microscopy. Rev Sci Instr 85, 111101111117.CrossRefGoogle Scholar
Hu, B., Margolin, W., Molineux, I.J. & Liu, J. (2015). Structural remodeling of bacteriophage T4 and host membranes during infection initiation. Proc Nat Acad Sci U S A 112, E4919E4928.CrossRefGoogle ScholarPubMed
Mahamid, J., Pfeffer, S., Schaffer, M., Villa, E., Danev, R., Cuellar, L.K., Förster, F., Hyman, A.A., Plitzko, J.M. & Baumeister, W. (2016). Visualizing the molecular sociology at the HeLa cell nuclear periphery. Science 351, 969972.CrossRefGoogle ScholarPubMed
Malac, M., Beleggia, M., Kawasaki, M., Li, P. & Egerton, R.F. (2012). Convenient contrast enhancement by a hole-free phase plate. Ultramicroscopy 118, 7789.CrossRefGoogle ScholarPubMed
Marko, M., Leith, A., Hsieh, C. & Danev, R. (2011). Retrofit implementation of Zernike phase plate imaging for cryo-TEM. J Struct Biol 174, 400412.CrossRefGoogle ScholarPubMed
Marko, M., Meng, X., Hsieh, C., Roussie, J. & Striemer, C. (2013). Methods for testing Zernike phase plates and a report on silicon-based phase plates with reduced charging and improved ageing characteristics. J Struct Biol 184, 237244.CrossRefGoogle Scholar
Mastronarde, D.N. (1997). Dual-axis tomography: an approach with alignment methods that preserve resolution. J Struct Biol 120, 343352.CrossRefGoogle ScholarPubMed
Mastronarde, D.N. (2005). Automated electron microscope tomography using robust prediction of specimen movements. J Struct Biol 152, 3651.CrossRefGoogle ScholarPubMed

Marko supplementary material

Movie 1

Video 4 MB

Marko supplementary material

Movie 2

Video 1 MB

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 88
Total number of PDF views: 245 *
View data table for this chart

* Views captured on Cambridge Core between 24th November 2016 - 11th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Practical Experience with Hole-Free Phase Plates for Cryo Electron Microscopy
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Practical Experience with Hole-Free Phase Plates for Cryo Electron Microscopy
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Practical Experience with Hole-Free Phase Plates for Cryo Electron Microscopy
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *