Skip to main content Accessibility help
×
Home
Hostname: page-component-79b67bcb76-f4n6r Total loading time: 0.235 Render date: 2021-05-15T06:26:40.406Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Quantification Challenges for Atom Probe Tomography of Hydrogen and Deuterium in Zircaloy-4

Published online by Cambridge University Press:  11 March 2019

Isabelle Mouton
Affiliation:
Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
Andrew J. Breen
Affiliation:
Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
Siyang Wang
Affiliation:
Department of Materials, Royal School of Mines, Imperial College London, London, SW7 2AZ, UK
Yanhong Chang
Affiliation:
Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
Agnieszka Szczepaniak
Affiliation:
Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
Paraskevas Kontis
Affiliation:
Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
Leigh T. Stephenson
Affiliation:
Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
Dierk Raabe
Affiliation:
Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
M. Herbig
Affiliation:
Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
T. Ben Britton
Affiliation:
Department of Materials, Royal School of Mines, Imperial College London, London, SW7 2AZ, UK
Baptiste Gault
Affiliation:
Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
Corresponding

Abstract

Analysis and understanding of the role of hydrogen in metals is a significant challenge for the future of materials science, and this is a clear objective of recent work in the atom probe tomography (APT) community. Isotopic marking by deuteration has often been proposed as the preferred route to enable quantification of hydrogen by APT. Zircaloy-4 was charged electrochemically with hydrogen and deuterium under the same conditions to form large hydrides and deuterides. Our results from a Zr hydride and a Zr deuteride highlight the challenges associated with accurate quantification of hydrogen and deuterium, in particular associated with the overlap of peaks at a low mass-to-charge ratio and of hydrogen/deuterium containing molecular ions. We discuss possible ways to ensure that appropriate information is extracted from APT analysis of hydrogen in zirconium alloy systems that are important for nuclear power applications.

Type
Materials Science: Metals
Copyright
Copyright © Microscopy Society of America 2019 

Access options

Get access to the full version of this content by using one of the access options below.

References

Ai, CF & Tsong, TT (1984). A study of the temperature dependence of a surface catalyzed and field enhanced formation of H3 and NH3 on metal surfaces. J Chem Phys 81, 28452854.CrossRefGoogle Scholar
Bair, J, Asle Zaeem, M & Tonks, M (2015). A review on hydride precipitation in zirconium alloys. J Nucl Mater 466, 1220.CrossRefGoogle Scholar
Birch, R, Wang, S, Tong, V & Britton, TB (2018). The effect of cooling rate and grain size on hydride formation in Zircaloy-4. arXiv:1807.11927 [cond-mat]. Available at http://arxiv.org/abs/1807.11927 (retrieved October 10, 2018).Google Scholar
Breen, AJ, Mouton, I, Lu, W, Wang, S, Szczepaniak, A, Kontis, P, Stephenson, LT, Chang, Y, da Silva, AK, Liebscher, CH, Raabe, D, Britton, TB, Herbig, M & Gault, B (2018). Atomic scale analysis of grain boundary deuteride growth front in Zircaloy-4. Scr Mater 156, 4246.CrossRefGoogle Scholar
Chang, Y, Breen, AJ, Tarzimoghadam, Z, Kürnsteiner, P, Gardner, H, Ackerman, A, Radecka, A, Bagot, PAJ, Lu, W, Li, T, Jägle, EA, Herbig, M, Stephenson, LT, Moody, MP, Rugg, D, Dye, D, Ponge, D, Raabe, D & Gault, B (2018). Characterizing solute hydrogen and hydrides in pure and alloyed titanium at the atomic scale. Acta Mater 150, 273280.CrossRefGoogle Scholar
Chen, Y-S, Haley, D, Gerstl, SSA, London, AJ, Sweeney, F, Wepf, RA, Rainforth, WM, Bagot, PAJ & Moody, MP (2017). Direct observation of individual hydrogen atoms at trapping sites in a ferritic steel. Science 355, 11961199.CrossRefGoogle Scholar
Chi-fong, A & Tsong, TT (1984). Field promoted and surface catalyzed formation of H3 and NH3 on transition metal surfaces: A pulsed-laser imaging atom-probe study. Surf Sci 138, 339360.CrossRefGoogle Scholar
Christensen, M, Wolf, W, Freeman, C, Wimmer, E, Adamson, RB, Hallstadius, L, Cantonwine, PE & Mader, EV (2015). H in α -Zr and in zirconium hydrides: Solubility, effect on dimensional changes, and the role of defects. J Phys: Condens Matter 27, 025402.Google Scholar
Devaraj, A, Perea, DE, Liu, J, Gordon, LM, Prosa, TJ, Parikh, P, Diercks, DR, Meher, S, Kolli, RP, Meng, YS & Thevuthasan, S (2018). Three-dimensional nanoscale characterisation of materials by atom probe tomography. Int Mater Rev 63, 68101.CrossRefGoogle Scholar
Gault, B, La Fontaine, A, Moody, MPMP, Ringer, SPSP & Marquis, EAEA (2010). Impact of laser pulsing on the reconstruction in an atom probe tomography. Ultramicroscopy 110, 12151222.CrossRefGoogle Scholar
Gault, B, Saxey, DW, Ashton, MW, Sinnott, SB, Chiaramonti, AN, Moody, MP & Schreiber, DK (2016). Behavior of molecules and molecular ions near a field emitter. This work is a partial contribution of the US Government and therefore is not subject to copyright in the United States. New J Phys 18, 33031.CrossRefGoogle Scholar
Gemma, R, Al-Kassab, T, Kirchheim, R & Pundt, A (2007). Studies on hydrogen loaded V–Fe8 at% films on Al2O3 substrate. J Alloys Compd 446–447, 534538.CrossRefGoogle Scholar
Gemma, R, Al-Kassab, T, Kirchheim, R & Pundt, A (2011). Analysis of deuterium in V–Fe5 at.% film by atom probe tomography (APT). J Alloys Compd 509, S872S876.CrossRefGoogle Scholar
Giroldi, JP, Vizcaíno, P, Flores, AV & Banchik, AD (2009). Hydrogen terminal solid solubility determinations in Zr–2.5Nb pressure tube microstructure in an extended concentration range. J Alloys Compd 474, 140146.CrossRefGoogle Scholar
Grosse, M, Steinbrueck, M, Lehmann, E & Vontobel, P (2008). Kinetics of hydrogen absorption and release in zirconium alloys during steam oxidation. Oxid Met 70, 149162.CrossRefGoogle Scholar
Kellogg, GL (1981). Determining the field emitter temperature during laser irradiation in the pulsed laser atom probe. J Appl Phys 52, 5320.CrossRefGoogle Scholar
Kelly, TF & Miller, MK (2007). Invited review article: Atom probe tomography. Rev Sci Instrum 78, 031101.CrossRefGoogle ScholarPubMed
Kestel, BJ (1986). Non-acid electrolyte thins many materials for TEM without causing hydride formation. Ultramicroscopy 19, 205211.CrossRefGoogle Scholar
Kingham, DR (1982). The post-ionization of field evaporated ions: A theoretical explanation of multiple charge states. Surf Sci 116, 273301.CrossRefGoogle Scholar
Kitaguchi, HS, Lozano-Perez, S & Moody, MP (2014). Quantitative analysis of carbon in cementite using pulsed laser atom probe. Ultramicroscopy 147, 5160.CrossRefGoogle ScholarPubMed
Li, S, Wang, Y, Che, Z, Liu, G, Ren, Y & Wang, Y (2017). Investigations of deformation-induced δ→ζ phase transformation in zirconium hydride by in situ high-energy X-ray diffraction. Acta Mater 140, 168175.CrossRefGoogle Scholar
Li, T, Kasian, O, Cherevko, S, Zhang, S, Geiger, S, Scheu, C, Felfer, P, Raabe, D, Gault, B & Mayrhofer, KJJ (2018). Atomic-scale insights into surface species of electrocatalysts in three dimensions. Nat Catal 1, 300305.CrossRefGoogle Scholar
London, AJ, Haley, D & Moody, MP (2017). Single-ion deconvolution of mass peak overlaps for atom probe microscopy. Microsc Microanal 23, 300306.CrossRefGoogle ScholarPubMed
Mancini, L, Amirifar, N, Shinde, D, Blum, I, Gilbert, M, Vella, A, Vurpillot, F, Lefebvre, W, Lardé, R, Talbot, E, Pareige, P, Portier, X, Ziani, A, Davesnne, C, Durand, C, Eymery, J, Butté, R, Carlin, J-F, Grandjean, N & Rigutti, L (2014). Composition of wide bandgap semiconductor materials and nanostructures measured by atom probe tomography and its dependence on the surface electric field. J Phys Chem C 118, 2413624151.CrossRefGoogle Scholar
Marquis, EAEA & Gault, B (2008). Determination of the tip temperature in laser assisted atom-probe tomography using charge state distributions. J Appl Phys 104, 084914.CrossRefGoogle Scholar
McMinn, A, Darby, EC & Schofield, JS (2000). Terminal solid solubility of hydrogen in zirconium alloys. In Proc 12th Int Symp on Zirconium in the Nuclear Industry ASTM STP 1354, Sabol, GB & Moan, GD (Eds.), West Conshohocken, USA: ASTM, 173194.Google Scholar
Miller, MK (1981). An atom probe study of the anomalous field evaporation of alloys containing silicon. J Vac Sci Technol 19, 57.CrossRefGoogle Scholar
Miller, MK (2000). Atom Probe Tomography: Analysis at the New, Atomic Level. York: Kluwer Academic/Plenum Publishers.CrossRefGoogle Scholar
Müller, EW, Panitz, JA, McLane, SB & Müller, EW (1968). Atom-probe field ion microscope. Rev Sci Instrum 39, 8386.CrossRefGoogle Scholar
Müller, M, Saxey, DWW, Smith, GDWDW & Gault, B (2011). Some aspects of the field evaporation behaviour of GaSb. Ultramicroscopy 111, 487492.CrossRefGoogle ScholarPubMed
Orloff, J (2008). Handbook of Charged Particle Optics, 2nd ed. Boca Raton, USA: CRC Press.Google Scholar
Sha, W, Chang, L, Smith, GDWDW, Mittemeijer, EJJ, Liu, C & Mittemeijer, EJJ (1992). Some aspects of atom-probe analysis of Fe-c and Fe-n systems. Surf Sci 266, 416423.CrossRefGoogle Scholar
Shariq, A, Mutas, S, Wedderhoff, K, Klein, C, Hortenbach, H, Teichert, S, Kücher, P & Gerstl, SSA (2009). Investigations of field-evaporated end forms in voltage- and laser-pulsed atom probe tomography. Ultramicroscopy 109, 472479.CrossRefGoogle ScholarPubMed
Shen, HH, Zu, XT, Chen, B, Huang, CQ & Sun, K (2016). Direct observation of hydrogenation and dehydrogenation of a zirconium alloy. J Alloys Compd 659, 2330.CrossRefGoogle Scholar
Suman, S, Khan, MK, Pathak, M, Singh, RN & Chakravartty, JK (2015). Hydrogen in Zircaloy: Mechanism and its impacts. Int J Hydrogen Energy 40, 59765994.CrossRefGoogle Scholar
Sundell, G, Thuvander, M & Andrén, H-O (2013). Hydrogen analysis in APT: Methods to control adsorption and dissociation of H2. Ultramicroscopy 132, 285289.CrossRefGoogle Scholar
Takahashi, J, Kawakami, K & Kobayashi, Y (2018). Origin of hydrogen trapping site in vanadium carbide precipitation strengthening steel. Acta Mater 153, 193204.CrossRefGoogle Scholar
Takahashi, J, Kawakami, K, Kobayashi, Y & Tarui, T (2010). The first direct observation of hydrogen trapping sites in TiC precipitation-hardening steel through atom probe tomography. Scr Mater 63, 261264.CrossRefGoogle Scholar
Takahashi, J, Kawakami, K, Otsuka, H & Fujii, H (2009). Atom probe analysis of titanium hydride precipitates. Ultramicroscopy 109, 568573.CrossRefGoogle ScholarPubMed
Thompson, K, Lawrence, D, Larson, DJ, Olson, JD, Kelly, TF & Gorman, B (2007). In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107, 131139.CrossRefGoogle ScholarPubMed
Tong, VS & Britton, TB (2017). Formation of very large ‘blocky alpha’ grains in Zircaloy-4. Acta Mater 129, 510520.CrossRefGoogle Scholar
Tsong, TT, Kinkus, TJ & Ai, CF (1983). Field induced and surface catalyzed formation of novel ions: A pulsed-laser time-of-flight atom-probe study. J Chem Phys 78, 47634775.CrossRefGoogle Scholar
Vurpillot, F, Houard, J, Vella, A & Deconihout, B (2009). Thermal response of a field emitter subjected to ultra-fast laser illumination. J Phys D: Appl Phys 42, 125502.CrossRefGoogle Scholar
Yamanaka, S, Higuchi, K & Miyake, M (1995). Hydrogen solubility in zirconium alloys. J Alloys Compd 231, 503507.CrossRefGoogle Scholar
Yao, L, Cairney, JM, Zhu, C & Ringer, SP (2011). Optimisation of specimen temperature and pulse fraction in atom probe microscopy experiments on a microalloyed steel. Ultramicroscopy 111, 648651.CrossRefGoogle ScholarPubMed

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Quantification Challenges for Atom Probe Tomography of Hydrogen and Deuterium in Zircaloy-4
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Quantification Challenges for Atom Probe Tomography of Hydrogen and Deuterium in Zircaloy-4
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Quantification Challenges for Atom Probe Tomography of Hydrogen and Deuterium in Zircaloy-4
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *