Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-13T19:45:09.389Z Has data issue: false hasContentIssue false

The Three-Dimensional Point Spread Function of Aberration-Corrected Scanning Transmission Electron Microscopy

Published online by Cambridge University Press:  31 August 2011

Andrew R. Lupini
Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN 37831-6064, USA
Niels de Jonge*
Vanderbilt UniversitySchool of Medicine, Department of Molecular Physiology and Biophysics, Nashville, TN 37232-0615, USA
Corresponding author. E-mail:
Get access


Aberration correction reduces the depth of field in scanning transmission electron microscopy (STEM) and thus allows three-dimensional (3D) imaging by depth sectioning. This imaging mode offers the potential for sub-Ångstrom lateral resolution and nanometer-scale depth sensitivity. For biological samples, which may be many microns across and where high lateral resolution may not always be needed, optimizing the depth resolution even at the expense of lateral resolution may be desired, aiming to image through thick specimens. Although there has been extensive work examining and optimizing the probe formation in two dimensions, there is less known about the probe shape along the optical axis. Here the probe shape is examined in three dimensions in an attempt to better understand the depth resolution in this mode. Examples are presented of how aberrations change the probe shape in three dimensions, and it is found that off-axial aberrations may need to be considered for focal series of large areas. It is shown that oversized or annular apertures theoretically improve the vertical resolution for 3D imaging of nanoparticles. When imaging nanoparticles of several nanometer size, regular STEM can thereby be optimized such that the vertical full-width at half-maximum approaches that of the aberration-corrected STEM with a standard aperture.

Equipment/Techniques Development
Copyright © Microscopy Society of America 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Allen, J.E., Hemesath, E.R., Perea, D.E., Lensch-Flak, J.L., Li, Z.Y., Yin, F., Gass, M.H., Wang, P., Bleloch, A.L., Palmer, R.E. & Lauhon, L.J. (2008). High-resolution detection of Au catalyst atoms in Si nanowires. Nat Nanotechnol 3, 168173.CrossRefGoogle ScholarPubMed
Barth, J.E. & Kruit, P. (1996). Addition of different contributions to the charged particle probe size. Optik 101, 101109.Google Scholar
Behan, G., Cosgriff, E.C., Kirkland, A.I. & Nellist, P.D. (2009). Three-dimensional imaging by optical sectioning in the aberration-corrected scanning-transmission electron microscope. Phil Trans R Soc London A 367, 38253844.Google ScholarPubMed
Borisevich, A.Y., Lupini, A.R. & Pennycook, S.J. (2006a). Depth sectioning with the aberration-corrected scanning transmission electron microscope. Proc Natl Acad Sci 103, 30443048.CrossRefGoogle ScholarPubMed
Borisevich, A.Y., Lupini, A.R., Travaglini, S. & Pennycook, S.J. (2006b). Depth sectioning of aligned crystals with the aberration-corrected scanning transmission electron microscope. J Electron Microsc 55, 712.CrossRefGoogle Scholar
Born, M. & Wolf, E. (1959). Principles of Optics. London: Pergamon Press Ltd.Google Scholar
Cosgriff, E.C., D'Alfonso, A.J., Allen, L.J., Findlay, S.D., Kirkland, A.I. & Nellist, P.D. (2008). Three-dimensional imaging in double aberration-corrected scanning confocal electron microscopy, Part I: Elastic scattering. Ultramicroscopy 108, 15581566.CrossRefGoogle ScholarPubMed
de Jonge, N., Sougrat, R., Northan, B.M. & Pennycook, S.J. (2010). Three-dimensional scanning transmission electron microscopy of biological specimens. Microsc Microanal 16, 5463.CrossRefGoogle ScholarPubMed
Dukes, M.J., Ramachandra, R., Baudoin, J.P., Jerome, W.G. & de Jonge, N. (2011). Three-dimensional locations of gold-labeled proteins in a whole mount eukaryotic cell obtained with 3 nm precision using aberration-corrected scanning transmission electron microscopy. J Struct Biol 174, 552562.CrossRefGoogle Scholar
Einspahr, J.J. & Voyles, P.M. (2006). Prospects for 3D, nanometer-resolution imaging by confocal STEM. Ultramicroscopy 106, 10411052.CrossRefGoogle ScholarPubMed
Erni, R. (2010). Aberration-Corrected Imaging in Transmission Electron Microscopy: An Introduction. London: Imperial College Press.CrossRefGoogle Scholar
Fertig, J. & Rose, H. (1981). Resolution and contrast of crystalline objects in high-resolution scanning transmission electron microscopy. Optik 59, 407429.Google Scholar
Frigo, S.P., Levine, Z.H. & Zaluzec, N.J. (2002). Submicron imaging of buried integrated circuit structures using scanning confocal electron microscopy. Appl Phys Lett 81, 21122114.CrossRefGoogle Scholar
Haider, M., Rose, H., Uhlemann, S., Kabius, B. & Urban, K. (1998). Towards 0.1 nm resolution with the first spherically corrected transmission electron microscope. J Electron Microsc 47, 395405.CrossRefGoogle Scholar
Haider, M., Uhlemann, S. & Zach, J. (2000). Upper limits for the residual aberrations of a high-resolution aberration-corrected STEM. Ultramicroscopy 81, 163175.CrossRefGoogle ScholarPubMed
Kirkland, A.I., Meyer, R.R. & Chang, L.-Y. S. (2006). Local measurement and computational refinement of aberrations for HRTEM. Microsc Microanal 12, 461468.CrossRefGoogle ScholarPubMed
Kisielowski, C., Freitag, B., Bischoff, M., van Lin, H., Lazar, S., Knippels, G., Tiemeijer, P., van der Stam, M., von Harrach, S., Stekelenburg, M., Haider, M., Uhlemann, S., Mueller, H., Hartel, P., Kabius, B., Miller, D., Petrov, I., Olson, E.A., Donchev, T., Kenik, E.A., Lupini, A.R., Bentley, J., Pennycook, S.J., Anderson, I.M., Minor, A.M., Schmid, A.K., Duden, T., Radmilovic, V., Ramasse, Q.M., Watanabe, M., Erni, R., Stach, E.A., Denes, P. & Dahmen, U. (2008). Detection of single atoms and buried defects in three dimensions by aberration-corrected electron microscope with 0.5-Å information limit. Microsc Microanal 14, 469477.CrossRefGoogle Scholar
Krivanek, O.L., Dellby, N., Keyse, R.J., Murfitt, M.F., Own, C.S. & Szilagyi, Z.S. (2008). Advances in aberration-corrected scanning transmission electron microscopy and electron energy-loss spectroscopy. In Aberration-Corrected Electron Microscopy, Hawkes, P.W. (Ed.), pp. 121160. Waltham, MA: Academic Press.CrossRefGoogle Scholar
Krivanek, O.L., Dellby, N. & Lupini, A.R. (1999). Towards sub-angstrom electron beams. Ultramicroscopy 78, 111.CrossRefGoogle Scholar
Lupini, A.R., Borisevich, A., Idrobo, J.C., Christen, H.M., Biegalski, M. & Pennycook, S.J. (2009). Characterizing the two- and three-dimensional resolution of an improved aberration-corrected STEM. Microsc Microanal 15, 441453.CrossRefGoogle ScholarPubMed
Mobus, G. & Nufer, S. (2003). Nanobeam propagation and imaging in a FEGTEM/STEM. Ultramicroscopy 96, 285298.CrossRefGoogle Scholar
Mory, C., Tence, M. & Colliex, C. (1985). Theoretical study of the characteristics of the probe for a STEM with a field emission gun. J Microsc Spectrosc Electron 10, 381387.Google Scholar
Nellist, P.D. & Pennycook, S.J. (1998). Subangstrom resolution by underfocused incoherent transmission electron microscopy. Phys Rev Lett 81(19), 41564159.CrossRefGoogle Scholar
Pawley, J.B. (1995). Handbook of Biological Confocal Microscopy. New York: Springer.CrossRefGoogle Scholar
Press, W.H., Teukolsky, S.A., Vetterling, W.T. & Flannery, B.P. (1988). Numerical Recipes in C: The Art of Scientific Computing. New York: Cambridge University Press.Google Scholar
Rose, H. (2008). Optics of high-performance electron microscopes. Sci Technol Adv Mater 9, 130.CrossRefGoogle ScholarPubMed
van Benthem, K., Lupini, A.R., Kim, M., Baik, H.S., Doh, S.J., Lee, J.H., Oxley, M.P., Findlay, S.D., Allen, L.J. & Pennycook, S.J. (2005). Three-dimensional imaging of individual hafnium atoms inside a semiconductor device. Appl Phys Lett 87, 034104.CrossRefGoogle Scholar
Williams, D.B., Michael, J.R., Goldstein, J.I. & Romig, A.D. Jr. (1992). Definition of the spatial resolution of X-ray microanalysis in thin foils. Ultramicroscopy 47, 121132.CrossRefGoogle Scholar
Xiao, Y., Patolsky, F., Katz, E., Hainfeld, J.F. & Willner, I. (2003). “Plugging into enzymes”: Nanowiring of redox enzymes by a gold nanoparticle. Science 299, 18771881.CrossRefGoogle ScholarPubMed
Xin, H.L. & Muller, D.A. (2009). Aberration-corrected ADF-STEM depth sectioning and prospects for reliable 3D imaging in S/TEM. J Elec Microsc 58, 157165.CrossRefGoogle ScholarPubMed