Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 5
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Alwani, Saniya and Badea, Ildiko 2016. Carbon Nanomaterials Sourcebook.


    Zhu, Hugh Lu Cheng, Jiaqi Zhang, Di Liang, Chunjun Reckmeier, Claas J. Huang, He Rogach, Andrey L. and Choy, Wallace C.H. 2016. Room-Temperature Solution-Processed NiOx:PbI2Nanocomposite Structures for Realizing High-Performance Perovskite Photodetectors. ACS Nano, Vol. 10, Issue. 7, p. 6808.


    Uckermann, Ortrud Galli, Roberta Beiermeister, Rudolf Sitoci-Ficici, Kerim-Hakan Later, Robert Leipnitz, Elke Neuwirth, Ales Chavakis, Triantafyllos Koch, Edmund Schackert, Gabriele Steiner, Gerald and Kirsch, Matthias 2015. Endogenous Two-Photon Excited Fluorescence Provides Label-Free Visualization of the Inflammatory Response in the Rodent Spinal Cord. BioMed Research International, Vol. 2015, p. 1.


    Ruckebusch, C. and Blanchet, L. 2013. Multivariate curve resolution: A review of advanced and tailored applications and challenges. Analytica Chimica Acta, Vol. 765, p. 28.


    Davis, Ryan W. Volponi, Joanne V. Jones, Howland D.T. Carvalho, Benjamin J. Wu, Huawen and Singh, Seema 2012. Multiplex fluorometric assessment of nutrient limitation as a strategy for enhanced lipid enrichment and harvesting of Neochloris oleoabundans. Biotechnology and Bioengineering, Vol. 109, Issue. 10, p. 2503.


    ×

Accurate Detection of Low Levels of Fluorescence Emission in Autofluorescent Background: Francisella-Infected Macrophage Cells

  • Ryan W. Davis (a1), Jerilyn A. Timlin (a2), Julia N. Kaiser (a1), Michael B. Sinclair (a2), Howland D.T. Jones (a2) and Todd W. Lane (a1)
  • DOI: http://dx.doi.org/10.1017/S1431927610000322
  • Published online: 01 June 2010
Abstract
Abstract

Cellular autofluorescence, though ubiquitous when imaging cells and tissues, is often assumed to be small in comparison to the signal of interest. Uniform estimates of autofluorescence intensity obtained from separate control specimens are commonly employed to correct for autofluorescence. While these may be sufficient for high signal-to-background applications, improvements in detector and probe technologies and introduction of spectral imaging microscopes have increased the sensitivity of fluorescence imaging methods, exposing the possibility of effectively probing the low signal-to-background regime. With spectral imaging, reliable monitoring of signals near or even below the noise levels of the microscope is possible if compensation for autofluorescence and background signals can be performed accurately. We demonstrate the importance of accurate autofluorescence modeling and the utility of spectral imaging and multivariate analysis methods using a case study focusing on fluorescence confocal spectral imaging of host-pathogen interactions. In this application fluorescent proteins are produced when Francisella novicida invade host macrophage cells. The resulting analyte signal is spectrally overlapped and typically weaker than the cellular autofluorescence. In addition to discussing the advantages of spectral imaging for following pathogen invasion, we present the spectral properties and cellular origin of macrophage autofluorescence.

Copyright
Corresponding author
Corresponding author. E-mail: rwdavis@sandia.gov
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

H. Andersson , T. Baechi , M. Hoechl & C. Richter (1998). Autofluorescence in living cells. J Microsc 191, 17.

R. Bro & S.A. DeJong (1997). A fast non-negativity constrained least squares algorithm. J Chemom 11, 393401.

R.W. Davis , D.C. Arango , H.D.T. Jones , M.H. Van Benthem , D.M. Haaland , S.M. Brozik & M.B. Sinclair (2009). Antimicrobial peptide interactions with silica bead supported bilayers and E. coli: Buforin II, magainin II, and arenicin. J Pept Sci 15, 511522.

O.M. de Bruin , J.S. Ludu & F.E. Nano (2007). The Francisella pathogenicity island protein IglA localizes to the bacterial cytoplasm and is needed for intracellular growth. BMC Microbiol 7, 1471.

G.H. Golub & C. Reinsch (1970). Singular value decomposition and least squares solutions. Numer Math 14, 403420.

D.M. Haaland , R.G. Easterling & D.A. Vopicka (1985). Multivariate least-squares methods applied to the quantitative spectral analysis of multicomponent samples. Appl Spectrosc 39, 7383.

A.A. Heikel , S.T. Hess , G.S. Baird , R.Y. Tsien & W.W. Webb (2001). Molecular spectroscopy and dynamics of intrinsically fluorescent proteins: Coral red (dsRed) and yellow (Citrine). Proc Nat Acad Sci USA 97, 1199612001.

H.D.T Jones , D.M. Haaland , M.B. Sinclair , D.K. Melgaard , M.H. Van Benthem & M.C. Pedroso (2008). Weighting hyperspectral image data for improved multivariate curve resolution results. J Chemom 22, 482490.

N. Keshava & J.F. Mustard (2002). Spectral unmixing. IEEE Signal Proc Mag 19, 4457.

W.H. Lawton & E.A. Sylvestre (1971). Self modeling curve resolution. Technometrics 13, 617633.

J.S. Ludu , E.B. Nix , B.N. Duplantis , O.M. de Bruin , L.A. Gallagher , L.M. Hawley & F.E. Nano (2007). Genetic elements for selection, deletion mutagenesis and complementation in Francisella spp. FEMS Microbiol Lett 278, 8693.

T.M. Maier , A. Havig , M. Casey , F.E. Nano , D.W. Frank & T.C. Zahrt (2004). Construction and characterization of a highly efficient Francisella shuttle plasmid. Appl Environ Microbiol 70, 75117519.

E.M.M. Manders , F.J. Verbeek & J.A. Aten (1993). Measurement of co-localization of objects in dual-color confocal images. J Microsc 169, 375382.

J.R. Mansfield , K.W. Gossage , C.C. Hoyt & R.M. Levenson (2005). Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging. J Biomed Opt 10, 41207.

M.J. Martinez , A.D. Aragon , A.L. Rodriguez , J.M. Weber , J.A. Timlin , M.B. Sinclair , D.M. Haaland & M. Werner-Washburne (2003). Identification and removal of contaminating fluorescence from commercial and in-house printed DNA microarrays. Nucleic Acids Res 31, e18.

J.R. Schoonover , R. Marx & S.L. Zhang (2003). Multivariate curve resolution in the analysis of vibrational spectroscopy data files. Appl Spectrosc 57, 154A170A.

R.A. Schultz , T. Nielsen , J.R. Zavaleta , R. Ruch , R. Wyatt & H. Garner (2001). Hyperspectral imaging: A novel approach for microscopic analysis. Cytometry 43, 239247.

N.C. Shaner , R.E. Campbell , P.A. Steinbach , B.N. Giepmans , A.E. Palmer & R.Y. Tsien (2004). Improved monomeric red, orange, and yellow fluorescent proteins derived from Dicosoma sp. red fluorescent protein. Nat Biotechnol 22, 15671572.

M.B. Sinclair , D.M. Haaland , J.A. Timlin & H.D.T. Jones (2006). Hyperspectral confocal microscope. Appl Opt 45, 62836291.

V. Sutherland , J.A. Timlin , L.T. Nieman , J.F. Guzowski , M.K. Chawla , B. Roysam , P.F. Worley , B.L. McNaughton , M.B. Sinclair & C.A. Barnes (2007). Advanced imaging of multiple mRNAs in brain tissue using a custom hyperspectral imager and multivariate curve resolution. J Neurosci Meth 160, 144148.

R. Tauler , A. Smilde & B. Kowalski (1995). Selectivity, local rank, three-way data analysis and ambiguity in multivariate curve resolution. J Chemom 9, 3158.

J.A. Timlin , D.M. Haaland , M.B. Sinclair , A.D. Aragon , M.J. Martinez & M. Werner-Washburne (2005). Hyperspectral microarray scanning: Impact and reliability of gene expression data. BMC Genomics 6, 72.

M.H. Van Benthem & M.R. Keenan (2004). Fast algorithm for the solution of large scale non-negativity constrained least squares problems. J Chemom 18, 441450.

W.F.J. Vermaas , J.A. Timlin , H.D.T. Jones , M.B. Sinclair , L.T. Nieman , S.W. Hamad , D.K. Melgaard & D.M. Haaland (2008). In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells. Proc Natl Acad Sci USA 105, 40504055.

H. Xu & B.W. Rice (2009). In-vivo fluorescence imaging with a multivariate curve resolution spectral unmixing technique. J Biomed Opt 14, 064011.

T. Zimmerman , J. Rietdorf & R. Pepperkok (2003). Spectral imaging and its applications in live cell microscopy. FEBS Lett 546, 8792.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: