Skip to main content

Atomic-Scale Imaging and Spectroscopy for In Situ Liquid Scanning Transmission Electron Microscopy

  • Katherine L. Jungjohann (a1), James E. Evans (a2), Jeffery A. Aguiar (a1) (a3), Ilke Arslan (a1) and Nigel D. Browning (a1) (a2)...

Observation of growth, synthesis, dynamics, and electrochemical reactions in the liquid state is an important yet largely unstudied aspect of nanotechnology. The only techniques that can potentially provide the insights necessary to advance our understanding of these mechanisms is simultaneous atomic-scale imaging and quantitative chemical analysis (through spectroscopy) under environmental conditions in the transmission electron microscope. In this study we describe the experimental and technical conditions necessary to obtain electron energy loss (EEL) spectra from a nanoparticle in colloidal suspension using aberration-corrected scanning transmission electron microscopy (STEM) combined with the environmental liquid stage. At a fluid path length below 400 nm, atomic resolution images can be obtained and simultaneous compositional analysis can be achieved. We show that EEL spectroscopy can be used to quantify the total fluid path length around the nanoparticle and demonstrate that characteristic core-loss signals from the suspended nanoparticles can be resolved and analyzed to provide information on the local interfacial chemistry with the surrounding environment. The combined approach using aberration-corrected STEM and EEL spectra with the in situ fluid stage demonstrates a plenary platform for detailed investigations of solution-based catalysis.

Corresponding author
Corresponding author. E-mail:
Hide All
Aricò, A.S., Bruce, P., Scrosati, B., Tarascon, J. & Schalkwijk, W. (2005). Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4, 366377.
Bergmann, U., Wernet, Ph., Glatzel, P., Cavalleri, M., Pettersson, L.G.M., Nilsson, A. & Cramer, S.P. (2002). X-ray Raman spectroscopy at the oxygen K edge of water and ice: Implications on local structure models. Phys Rev B 66, 092107.
Browning, N.D., Chisholm, M.F. & Pennycook, S.J. (1993). Atomic-resolution chemical analysis using a scanning transmission electron microscope. Nature 366, 143146.
Brydson, R., Sauer, H. & Engel, W. (1992). Electron energy loss near-edge structure as an analytical tool—The study of minerals. In Transmission Electron Energy Loss Spectrometry in Materials Science, Disko, M.M., Ahn, C.C. & Fultz, B. (Eds.), pp. 131154. Warrendale, PA: The Minerals, Metals and Materials Society.
Chen, K.L., Smith, B.A., Ball, W.P. & Fairbrother, D.H. (2010). Assessing the colloidal properties of engineered nanoparticles in water: Case studies from fullerene C60 nanoparticles and carbon nanotubes. Environ Chem 7, 1027.
Coleman, J.N., Lotya, M., O'Neill, A., Bergin, S.D., King, P.J., Khan, U., Young, K., Gaucher, A., De, S., Smith, R.J., Shvets, I.V., Arora, S.K., Stanton, G., Kim, H., Lee, K., Kim, G.T., Duesberg, G.S., Hallam, T., Boland, J.J., Wang, J.J., Donegan, J.F., Grunlan, J.C., Moriarty, G., Shmeliov, A., Nicholls, R.J., Perkins, J.M., Grievesson, E.M., Theuwissen, K., McComb, D.W., Nellist, P.D. & Nicolosi, V. (2011). Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568571.
Colvin, V.L. (2003). The potential environmental impact of engineered nanomaterials. Nat Biotech 21, 11661170.
de Jonge, N., Peckys, D.B., Kremers, G.J. & Piston, D.W. (2009). Electron microscopy of whole cells in liquid with nanometer resolution. Proc Natl Acad Sci USA 106, 21592164.
Egerton, R.F. (1996). Electron Energy Loss Spectroscopy. New York: Plenum Press.
Evans, J.E., Jungjohann, K.L., Browning, N.D. & Arslan, I. (2011). Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett 11, 28092813.
Grand, D., Bernas, A. & Amouyal, E. (1979). Photoionization of aqueous indole; Conduction band edge and energy gap in liquid water. Chem Phys 44, 7379.
Hartel, P., Rose, H. & Dinges, C. (1996). Conditions and reasons for incoherent imaging in STEM. Ultramicroscopy 63, 93114.
Henderson, M. (1996). Structural sensitivity in the dissociation of water on TiO2, single crystal surfaces. Langmuir 12, 50935098.
Iakoubovskii, K., Mitsuishi, K., Nakayama, Y. & Furuya, K. (2008). Mean free path of inelastic electron scattering in elemental solids and oxides using transmission electron microscopy: Atomic number dependent oscillatory behavior. Phys Rev B 77, 104102.
James, E.M. & Browning, N.D. (1999). Practical aspects of atomic resolution imaging and analysis in STEM. Ultramicroscopy 78, 125139.
Jiang, N. & Spence, J.C.H. (2011). In situ EELS study of dehydration of Al(OH)3 by electron beam irradiation. Ultramicroscopy 111, 860864.
Kang, D. (2002). Molecular orbital analysis of water activation on TiO2 (110) surface. J Korean Chem Soc 46, 179186.
Kim, W.B., Voitl, T., Rodriguez-Rivera, G.J. & Dumesic, J.A. (2004). Powering fuel cells with Co via aqueous polyoxometalates and gold catalysts. Science 305, 12801283.
Kroll, P. (2001). Structure and reactivity of amorphous silicon nitride investigated with density-functional methods. J Non-Cryst Sol 293295, 238243.
LaGrange, T., Armstrong, M.R., Boyden, K., Brown, C.G., Campbell, G.H., Colvin, J.D., DeHope, W.J., Frank, A.M., Gibson, D.J., Hartemann, F.V., Kim, J.S., King, W.E., Pyke, B.J., Reed, B.W., Shirk, M.D., Shuttlesworth, R.M., Stuart, B.C. & Torralva, B.R. (2006). Single-shot dynamic transmission electron microscopy. Appl Phys Lett 89, 044105.
Liu, K.L., Wu, C.C., Huang, Y.J., Pang, H.L., Chang, H.Y., Chang, P., Hsu, L. & Yew, T.R. (2008). Novel microchip for in situ TEM imaging of living organisms and bio-reactions in aqueous conditions. Lab Chip 8, 19151921.
Malis, T., Cheng, S.C. & Egerton, R.F. (1988). EELS log-ratio technique for specimen-thickness measurement in the TEM. J Elec Micro Tech 8, 193200.
Manocha, A.S. & Park, R.L. (1977). Flotation related ESCA studies on PbS surfaces. Appl Surf Sci 1, 129141.
Martin, J.M., Mansot, J.L. & Hallouis, M. (1989). Energy filtered electron microscopy (EFEM) of overbased reverse micelles. Ultramicroscopy 30, 321328.
Marton, L. (1935). La microscopie electronique des objets biologiques. Bull Cl Sci Acad R Belg 21, 553564.
Muller, D.A., Sorsch, T., Moccio, S., Baumann, F.H., Evans-Lutterodt, K. & Timp, G. (1999). The electronic structure at the atomic scale of ultrathin gate oxides. Nature 399, 758761.
Nel, A.E., Mädler, L., Velegol, D., Xia, T., Hoek, E.M.V., Somasundaran, P., Klaessig, F., Castranova, V. & Thompson, M. (2009). Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8, 543557.
Oberdörster, G., Maynard, A., Donaldson, K., Castranova, V., Fitzpatrick, J., Ausman, K., Carter, J., Karn, B., Kreyling, W., Lai, D., Olin, S., Monteiro-Riviere, N., Warheit, D., Yang, H. & A Report from the ILSI Research Foundation/Risk Science Institute Nanomaterial Toxicity Screening Working Group (2005). Particle and fibre toxicology. Part Fibre Toxicol 2, 8.
Ring, E.A. & de Jonge, N. (2010). Microfluidic system for transmission electron microscopy. Microsc Microanal 16, 622629.
Stefanovich, E. & Truong, T. (1999). Ab initio study of water adsorption on TiO2 (110): Molecular adsorption versus dissociative chemisorption. Chem Phys Lett 299, 623629.
Tao, F. & Salmeron, M. (2011). In situ studies of chemistry and structure of materials in reactive environments. Science 331, 171174.
Walls, M.G. & Howie, A. (1989). Dielectric theory of localised valence energy loss spectroscopy. Ultramicroscopy 28, 4042.
Williamson, M.J., Tromp, R.M., Vereecken, P.M., Hull, R. & Ross, F.M. (2003). Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat Mater 2, 532536.
Zheng, H., Claridge, S.A., Minor, A.M., Alivisatos, A.P. & Dahmen, U. (2009a). Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett 9, 24602465.
Zheng, H., Smith, R.K., Jun, Y., Kisielowski, C., Dahmen, U. & Alivisatos, A.P. (2009b). Observation of single colloidal platinum nanocrystal growth trajectories. Science 324, 13091312.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 8
Total number of PDF views: 213 *
Loading metrics...

Abstract views

Total abstract views: 639 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th April 2018. This data will be updated every 24 hours.