Skip to main content Accessibility help

Correlated SEM, FIB-SEM, TEM, and NanoSIMS Imaging of Microbes from the Hindgut of a Lower Termite: Methods for In Situ Functional and Ecological Studies of Uncultivable Microbes

  • Kevin J. Carpenter (a1), Peter K. Weber (a1), M. Lee Davisson (a1), Jennifer Pett-Ridge (a1), Michael I. Haverty (a2) and Patrick J. Keeling (a3)...


The hindguts of lower termites harbor highly diverse, endemic communities of symbiotic protists, bacteria, and archaea essential to the termite's ability to digest wood. Despite over a century of experimental studies, ecological roles of many of these microbes are unknown, partly because almost none can be cultivated. Many of the protists associate with bacterial symbionts, but hypotheses for their respective roles in nutrient exchange are based on genomes of only two such bacteria. To show how the ecological roles of protists and nutrient transfer with symbiotic bacteria can be elucidated by direct imaging, we combined stable isotope labeling (13C-cellulose) of live termites with analysis of fixed hindgut microbes using correlated scanning electron microscopy, focused ion beam-scanning electron microscopy (FIB-SEM), transmission electron microscopy, and high resolution imaging mass spectrometry (NanoSIMS). We developed methods to prepare whole labeled cells on solid substrates, whole labeled cells milled with a FIB-SEM instrument to reveal cell interiors, and ultramicrotome sections of labeled cells for NanoSIMS imaging of 13C enrichment in protists and associated bacteria. Our results show these methods have the potential to provide direct evidence for nutrient flow and suggest the oxymonad protist Oxymonas dimorpha phagocytoses and enzymatically degrades ingested wood fragments, and may transfer carbon derived from this to its surface bacterial symbionts.


Corresponding author

* Corresponding author.


Hide All

Current address: Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Mail Stop Donner, Berkeley, CA 94720, USA



Hide All
Behrens, S., Losekann, T., Pett-Ridge, J., Weber, P.K., Ng, W.O., Stevenson, B.S., Hutcheon, I.D., Relman, D.A. & Spormann, A.M. (2008). Linking microbial phylogeny to metabolic activity at the single-cell level by using enhanced element labeling-catalyzed reporter deposition fluorescence in situ hybridization (EL-FISH) and NanoSIMS. Appl Environ Microbiol 74(10), 31433150.
Berchtold, M., Chatzinotas, A., Schönhuber, W., Brune, A., Amann, R., Hahn, D. & König, H. (1999). Differential enumeration and in situ localization of microorganisms in the hindgut of the lower termite Mastotermes darwinensis by hybridization with rRNA-targeted probes. Arch Microbiol 172, 407416.
Bloodgood, R.A. & Fitzharris, T.P. (1976). Specific associations of prokaryotes with symbiotic flagellate protozoa from the hindgut of the termite Reticulitermes and the wood-eating roach Cryptocercus. Cytobios 17(66), 103122.
Boschker, H.T.S., Nold, S.C., Wellsbury, P., Bos, D., de Graaf, W., Pel, R., Parkes, R.J. & Cappenberg, T.E. (1998). Direct linking of microbial populations to specific biogeochemical processes by C-13-labelling of biomarkers. Nature 392(6678), 801805.
Brugerolle, G. & Bordereau, C. (2004). The flagellates of the termite Hodotermopsis sjoestedti with special reference to Hoplonympha, Holomastigotes and Trichomonoides trypanoides n. comb. Eur J Protistol 40, 163174.
Brugerolle, G. & Lee, J.H. (2000a). Order oxymonadida. In The Illustrated Guide to the Protozoa, 2nd ed., Lee, J.J., Leedale, G.F. & Bradbury, P. (Eds.), pp. 11861195. Lawrence, KS: Allen Press, Inc.
Brugerolle, G. & Lee, J.J. (2000b). Phylum Parabasalia. In An Illustrated Guide to the Protozoa, 2nd ed., Lee, J.J., Leedale, G.F. & Bradbury, P. (Eds.), pp. 11961250. Lawrence, KS: Allen Press Inc.
Brune, A. & Ohkuma, M. (2011). Role of the termite gut microbiota in symbiotic digestion. In Biology of Termites: A Modern Synthesis, Bignell, D.E., Roisin, Y. & Lo, N. (Eds.), pp. 439475. London: Springer.
Brune, A. & Stingl, U. (2006). Prokaryotic symbionts of termite gut flagellates: Phylogenetic and metabolic implications of a tripartite symbiosis. Prog Mol Subcell Biol 41, 3960.
Carpenter, K.J., Chow, L. & Keeling, P.J. (2009). Morphology, phylogeny, and diversity of Trichonympha (Parabasalia: Hypermastigida) of the wood-feeding cockroach Cryptocercus punctulatus . J Eukaryot Microbiol 56(4), 305313.
Carpenter, K.J., Horak, A., Chow, L. & Keeling, P.J. (2011). Symbiosis, morphology, and phylogeny of Hoplonymphidae (Parabasalia) of the wood-feeding roach Cryptocercus punctulatus . J Eukaryot Microbiol 58(5), 426436.
Carpenter, K.J., Horak, A. & Keeling, P.J. (2010). Phylogenetic position and morphology of spirotrichosomidae (parabasalia): New evidence from Leptospironympha of Cryptocercus punctulatus . Protist 161(1), 122132.
Carpenter, K.J. & Keeling, P.J. (2007). Morphology and phylogenetic position of Eucomonympha imla (Parabasalia: Hypermastigida). J Eukaryot Microbiol 54(4), 325332.
Carpenter, K.J., Waller, R.F. & Keeling, P.J. (2008). Surface morphology of Saccinobaculus (Oxymonadida): Implications for character evolution and function in oxymonads. Protist 159(2), 209221.
Cleveland, L.R. (1925). The effects of oxygenation and starvation on the symbiosis between the termite Termopsis and its intestinal flagellates. Biol Bull 48, 309325.
Cleveland, L.R. & Grimstone, A.V. (1964). The fine structure of the flagellate Mixotricha paradoxa and its associated microorganisms. Proc R Soc 159, 668686.
Cleveland, L.R., Hall, S.R., Sanders, E.P. & Collier, J. (1934). The wood-feeding roach Cryptocercus, its protozoa, and the symbiosis between protozoa and roach. Mem Am Acad Arts Sci 17, 1342.
Giberson, R.T., Demaree, R.S. & Nordhausen, R.W. (1997). Four hour processing of clinical/diagnostic specimens for electron microscopy using microwave technique. J Vet Diag Invest 9, 6167.
Grassi, B. (1917). Flagellati viventi nei Termiti. Mem R Accad Lincei 12(5), 331394.
Hollande, A. & Carruette-Valentin, J. (1971). Les atractophores, l'induction du fuseau et la division cellulaire chez les Hypermastigines Étude infrastructurale et révision systématique desTrichonymphines et des Spirotrichonymphines. Protistologica 7, 5100.
Hollande, A. & Valentin, J. (1968). Infrastructure du complexe rostral et origine du fuseau chez Staurojoenina caulleryi. Comptes Rendus Hebdomadaires des Seances de l'academie de sciences Series D 266, 12831286.
Hongoh, Y., Ohkuma, M. & Kudo, T. (2003). Molecular analysis of bacterial microbiota in the gut of the termite Reticulitermes speratus (Isoptera: Rhinotermitidae). FEMS Microbiol Ecol 44(2), 231242.
Hongoh, Y., Sharma, V.K., Prakash, T., Noda, S., Taylor, T.D., Kudo, T., Sakaki, Y., Toyoda, A., Hattori, M. & Ohkuma, M. (2008a). Complete genome of the uncultured termite group 1 bacteria in a single host protist cell. Proc Natl Acad Sci USA 105(14), 55555560.
Hongoh, Y., Sharma, V.K., Prakash, T., Noda, S., Toh, H., Taylor, T.D., Kudo, T., Sakaki, Y., Toyoda, A., Hattori, M. & Ohkuma, M. (2008b). Genome of an endosymbiont coupling N2 fixation to cellulolysis within protist cells in termite gut. Science 322(5904), 11081109.
Inward, D., Beccaloni, G. & Eggleton, P. (2007). Death of an order: A comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biol Lett 3(3), 331335.
Kirby, H. (1926). On Staurojoenina assimilis sp. nov. an intestinal flagellate from the termite Kalotermes minor Hagen. Univ Calif Publ Zool 29, 25102.
Kirby, H. (1932). Flagellates of the genus Trichonympha in termites. Univ Calif Publ Zool 37, 349476.
Kiuchi, I., Moriya, S. & Kudo, T. (2004). Two different size-distributions of engulfment-related vesicles among symbiotic protists of the lower termites, Reticulitermes speratus . Microb Environ 19, 211214.
Koidzumi, M. (1921). Studies on the intestinal protozoa found in the termites of Japan. Parasitol 13, 235309.
Leadbetter, J.R., Schmidt, T.M., Graber, J.R. & Breznak, J.A. (1999). Acetogenesis from H2 plus CO2 by spirochetes from termite guts. Science 283(5402), 686689.
Leander, B.S. & Keeling, P.J. (2004). Symbiotic innovation in the oxymonad Streblomastix strix . J Eukaryot Microbiol 51(3), 291300.
Lechene, C., Hillion, F., McMahon, G., Benson, D., Kleinfeld, A.M., Kampf, J.P., Distel, D., Luyten, Y., Bonventre, J., Hentschel, D., Park, K.M., Ito, S., Schwartz, M., Benichou, G. & Slodzian, G. (2006). High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry. J Biol 5(6), 20.
Leidy, J. (1877). On intestinal parasites of Termes flavipes . Proc Acad Nat Sci Philadelphia 29, 146149.
Lilburn, T.G., Kim, K.S., Ostrom, N.E., Byzek, K.R., Leadbetter, J.R. & Breznak, J.A. (2001). Nitrogen fixation by symbiotic and free-living spirochetes. Science 292(5526), 24952498.
Lo, N., Tokuda, G., Watanabe, H., Rose, H., Slaytor, M., Maekawa, K., Bandi, C. & Noda, H. (2000). Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. Curr Biol 10(13), 801804.
Maaß, A. & Radek, R. (2006). The gut flagellate community of the termite Neotermes cubanus with special reference to Staurojoenina and Trichovina hrdyi nov. gen. nov. sp. Eur J Protistol 42, 125141.
Manefield, M., Whiteley, A.S., Griffiths, R.I. & Bailey, M.J. (2002). RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl Environ Microbiol 68(11), 53675373.
Mayali, X., Weber, P.K., Brodie, E.L., Mabery, S., Hoeprich, P.D. & Pett-Ridge, J. (2012). High-throughput isotopic analysis of RNA microarrays to quantify microbial resource use. ISME J 6, 12101221.
Miller, M. (1969). Caste differentiation in lower termites. In Biology of Termites, Krishna, K. and Weesner, F. (Eds.), pp. 283307. New York: Academic Press.
Murrell, J.C. & Whiteley, A.S. (Eds.) (2011). Stable Isotope Probing and Related Technologies. Washington, DC: ASM Press.
Musat, N., Halm, H., Winterholler, B., Hoppe, P., Peduzzi, S., Hillion, F., Horreard, F., Amann, R., Jorgensen, B.B. & Kuypers, M.M.M. (2008). A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. Proc Natl Acad Sci USA 105(46), 1786117866.
Nakashima, K.I., Watanabe, H. & Azuma, J.I. (2002). Cellulase genes from the parabasalian symbiont Pseudotrichonympha grassii in the hindgut of the wood-feeding termite Coptotermes formosanus . Cell Mol Life Sci 59(9), 15541560.
Noda, S., Iida, T., Kitade, O., Nakajima, H., Kudo, T. & Ohkuma, M. (2005). Endosymbiotic Bacteroidales bacteria of the flagellated protist Pseudotrichonympha grassii in the gut of the termite Coptotermes formosanus . Appl Environ Microbiol 71(12), 88118817.
Noda, S., Inoue, T., Hongoh, Y., Kawai, M., Nalepa, C.A., Vongkaluang, C., Kudo, T. & Ohkuma, M. (2006). Identification and characterization of ectosymbionts of distinct lineages in Bacteroidales attached to flagellated protists in the gut of termites and a wood-feeding cockroach. Environ Microbiol 8(1), 1120.
Ohkuma, M. (2003). Termite symbiotic systems: Efficient bio-recycling of lignocellulose. Appl Microbiol Biotechnol 61(1), 19.
Ohkuma, M. & Brune, A. (2011). Diversity, structure, and evolution of the termite gut microbial community. In Biology of Termites: A Modern Synthesis, Bignell, D.E., Roisin, Y. & Lo, N. (Eds.), pp. 413438. London: Springer.
Ohkuma, M. & Kudo, T. (1996). Phylogenetic diversity of the intestinal bacterial community in the termite Reticulitermes speratus . Appl Environ Microbiol 62(2), 461468.
Ohkuma, M., Sato, T., Noda, S., Ui, S., Kudo, T. & Hongoh, Y. (2007). The candidate phylum “Termite Group 1” of bacteria: Phylogenetic diversity, distribution, and endosymbiont members of various gut flagellated protists. FEMS Microbiol Ecol 60(3), 467476.
Pett-Ridge, J. & Weber, P. (2012). NanoSIP: NanoSIMS applications for microbial biology. In Microbial Systems Biology: Methods and Protocols, Navid, A. (Ed.), pp. 375408. New York: Humana Press.
Popa, R., Weber, P.K., Pett-Ridge, J., Finzi, J.A., Fallon, S.J., Hutcheon, I.D., Nealson, K.H. & Capone, D.G. (2007). Carbon and nitrogen fixation and metabolite exchange in and between individual cells of Anabaena oscillarioides . ISME J 1(4), 354360.
Radajewski, S., Ineson, P., Parekh, N.R. & Murrell, J.C. (2000). Stable-isotope probing as a tool in microbial ecology. Nature 403(6770), 646649.
Radek, R., Hausmann, K. & Breunig, A. (1992). Ectobiotic and endocytobiotic bacteria associated with the termite flagellate Joenia-Annectens. Acta Protozoologica 31(2), 93107.
Rother, A., Radek, R. & Hausmann, K. (1999). Characterizaion of surface structures covering termite flagellates of the family oxymonadidae and ultrastructure of two oxymonad species, Microrhopalodina multinucleata and Oxymonas sp. Eur J Protistol 35, 116.
Stingl, U., Maaß, A., Radek, R. & Brune, A. (2004). Symbionts of the gut flagellate Staurojoenina sp. from Neotermes cubanus represent a novel, termite-associated lineage of Bacteroidales: Description of “Candidatus Vestibaculum illigatum”. Microbiol 150(Pt 7), 22292235.
Trager, W. (1934). The cultivation of a cellulose-digesting flagellate, Trichomonas termopsidis, and of certain other termite protozoa. Biol Bull 66, 182190.
Weber, P.K., Graham, G.A., Teslich, N.E., Chan, W.M., Ghosal, S., Leighton, T.J. & Wheeler, K.E. (2010). NanoSIMS imaging of Bacillus spores sectioned by focused ion beam. J Microsc 238(3), 189199.
Woebken, D., Burow, L.C., Prufert-Bebout, L., Bebout, B.M., Hoehler, T.M., Pett-Ridge, J., Spormann, A.M., Weber, P.K. & Singer, S.W. (2012). Identification of a novel cyanobacterial group as active diazotrophs in a coastal microbial mat using NanoSIMS analysis. ISME J 6, 14271439.
Yamaoka, I. (1979). Selective ingestion of food by the termite protozoa, Trichonympha agilis . Zoolog Mag (Tokyo) 88, 174179.
Yamin, M.A. (1979). Flagellates of the orders Trichomonadida Kirby, Oxymonadida Grasse, and Hypermastigida Grassi and Foa reported from lower termites (Isoptera families Mastotermitidae, Kalotermitidae, Hodotermitidae, Termopsidae, Rhinotermitidae, and Serritermitidae) and from the wood-feeding roach cryptocercus (Dictyoptera, Cryptocercidae). Sociobiology 4(1), 3119.
Yamin, M.A. (1981). Cellulose metabolism by the flagellate trichonympha from a termite is independent of endosymbiotic bacteria. Science 211(4477), 5859.
Yoshimura, T. (1995). Contribution of the protozoan fauna to nutritional physiology of the lower termite Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). Wood Res 82, 68129.
Yoshimura, T., Fujino, T., Itoh, T., Tsunodo, K. & Takahashi, M. (1996). Ingestion and decomposition of wood and cellulose by the protozoa in the hindgut of Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae) as evidenced by polarizing and transmission electron microscopy. Holzforschung 50, 99104.


Correlated SEM, FIB-SEM, TEM, and NanoSIMS Imaging of Microbes from the Hindgut of a Lower Termite: Methods for In Situ Functional and Ecological Studies of Uncultivable Microbes

  • Kevin J. Carpenter (a1), Peter K. Weber (a1), M. Lee Davisson (a1), Jennifer Pett-Ridge (a1), Michael I. Haverty (a2) and Patrick J. Keeling (a3)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed