Skip to main content Accessibility help

Dark-Field Imaging of Thin Specimens with a Forescatter Electron Detector at Low Accelerating Voltage

  • Nicolas Brodusch (a1), Hendrix Demers (a1) and Raynald Gauvin (a1)


A forescatter electron detector (FSED) was used to acquire dark-field micrographs (DF-FSED) on thin specimens with a scanning electron microscope. The collection angles were adjusted with the detector distance from the beam axis, which is similar to the camera length of the scanning transmission electron microscope annular DF detectors. The DF-FSED imaging resolution was calculated with SMART-J on an aluminum alloy and carbon nanotubes (CNTs) decorated with platinum nanoparticles. The resolution was three to six times worse than with bright-field imaging. Measurements of nanometer-size objects showed a similar feature size in DF-FSED imaging despite a signal-to-noise ratio 12 times smaller. Monte Carlo simulations were used to predict the variation of the contrast of a CNT/Fe/Pt system as a function of the collection angles. It was constant for very high collection angles (>450 mrad) and confirmed experimentally. The reverse contrast between carbon black particles and the smallest titanium dioxide (TiO2) nanoparticles was predicted by Monte Carlo simulations and observed in the DF-FSED micrograph of a battery electrode coating. However, segmentation of the micrograph was not able to isolate the TiO2 nanoparticle phase because of the close contrast of small TiO2 nanoparticles compared to the C black particles.


Corresponding author

* Corresponding author. E-mail:


Hide All
Brodusch, N., Demers, H. & Gauvin, R. (2013). Nanometers-resolution Kikuchi patters from materials science specimens with transmission electron forward scatter diffraction in the scanning electron microscope. J Microsc 250(1), 114.
Brodusch, N., Trudeau, M., Michaud, P., Rodrigue, L., Boselli, J. & Gauvin, R. (2012). Contribution of a new generation FE-SEM in the understanding of a 2099 Al-Li alloy. Microsc Microanal 18(6), 13931409.
Cowley, J.M. & Huang, Y. (1992). De-channelling contrast in annular dark-field STEM. Ultramicroscopy 40(2), 171180.
Crawford, B.J. & Liley, C.R.W. (1970). A simple transmission stage using the standard collection system in the scanning electron microscope. J Phys E: Sci Instrum 3, 461462.
Demers, H., Poirier-Demers, N., Drouin, D. & De Jonge, N. (2010). Simulating STEM imaging of nanoparticles in micrometers-thick substrates. Microsc Microanal 16(6), 795804.
Demers, H., Poirier-Demers, N., Réal Couture, A., Joly, D., Guilmain, M., de Jonge, N. & Drouin, D. (2011). Three-dimensional electron microscopy simulation with the Casino Monte Carlo software. Scanning 33(3), 135146.
Forbes, B.D., d'Alfonso, A.J., Findlay, S.D., van Dyck, D., Lebeau, J.M., Stemmer, S. & Allen, L.J. (2011). Thermal diffuse scattering in transmission electron microscopy. Ultramicroscopy 111(12), 16701680.
Giummarra, C., Thomas, B. & Rioja, R.J. (2007). New aluminum lithium alloys for aerospace applications. In Proceedings of the Third International Conference on Light Metals Technology, Sadayappan, K. & Sahoo, M. (Eds.). Ottawa, Ontario, Canada: CANMET.
Guise, O., Strom, C. & Prescilla, N. (2008). Evaluation of STEM-in-SEM vs. TEM for polymer applications in an industrial setting. Microsc Microanal 14(S2), 678679.
Halvarsson, M., Jonsson, T. & Canovic, S. (2008). Thin foil analysis in the SEM. J Phys: Conf Ser 126, 012075.
Haruta, M., Komatsu, H., Kurata, H., Azuma, M., Shimakawa, Y. & Isoda, S. (2008). Effects of electron channeling in HAADF intensity. In EMC 2008 14th European Microscopy Congress 1–5 September 2008, Luysberg, M., Tillmann, K. & Weirich, T. (Eds.), pp. 117118. Berlin: Springer.
Hondow, N., Harrington, J., Brydson, R., Doak, S.H., Singh, N., Manshian, B. & Brown, A. (2011). STEM mode in the SEM: A practical tool for nanotoxicology. Nanotoxicology 5(2), 215217.
Howie, A. (1979). Image contrast and localized signal selection techniques. J Microsc 117(Pt 1), 1123.
Hoyle, D., Malac, M., Trudeau, M. & Woo, P. (2011). UV treatment of electron microscope samples for reduced hydrocarbon contamination. In MSC-SMC 2011, 38th Annual Meeting, Geitmann, A. (Ed.), pp. 3536. Ottawa, Ontario, Canada: Microscopical Society of Canada.
Jesson, D.E. & Pennycook, S.J. (1995). Incoherent imaging of crystals using thermally scattered electrons. In P Roy Soc Lond Ser-A 449, 273293.
Joy, D.C. (2002). SMART—A program to measure SEM resolution and imaging performance. J Microsc 208, 2434.
Kaiser, U., Biskupek, J., Meyer, J.C., Leschner, J., Leschner, L., Rose, H., Stöger-Pollach, M., Khlobystov, A.N., Hartel, P., Müller, H., Haider, M., Eyhusen, S. & Benner, G. (2011). Transmission electron microscopy at 20 kV for imaging and spectroscopy. Ultramicroscopy 111(8), 12391246.
Keller, R.R. & Geiss, R.H. (2012). Transmission EBSD from 10 nm domains in a scanning electron microscope. J Microsc 245(Pt 3), 245251.
Lee, M.R. & Smith, C.L. (2006). Scanning transmission electron microscopy using a SEM: Applications to mineralogy and petrology. Mineral Mag 70(5), 579590.
Malis, T., Cheng, S.C. & Egerton, R.F. (1988). EELS log-ratio technique for specimen-thickness measurement in the TEM. J Electron Microsc Tech 8(2), 193200.
Merli, P.G., Corticelli, F. & Morandi, V. (2002). Images of dopant profiles in low-energy scanning transmission electron microscopy. Appl Phys Lett 81(24), 45354537.
Merli, P.G., Migliori, A., Nacucchi, M. & Vittori Antisari, M. (1996). Comparison of spatial resolutions obtained with different signals components in scanning electron microscopy. Ultramicroscopy 65(1), 2330.
Merli, P.G. & Morandi, V. (2005). Low-energy STEM of multilayers and dopant profiles. Microsc Microanal 11(1), 97104.
Merli, P.G., Morandi, V. & Corticelli, F. (2003). Backscattered electron imaging and scanning transmission electron microscopy imaging of multi-layers. Ultramicroscopy 94(1), 8998.
Morandi, V. & Merli, P.G. (2007a). Contrast and resolution versus specimen thickness in low energy scanning transmission electron microscopy. J Appl Phys 101(11), 114917.
Morandi, V. & Merli, P.G. (2007b). Scanning electron microscopy of thinned specimens: From multilayers to biological samples. Appl Phys Lett 90(16), 163113.
Morikawa, A., Kamiya, C., Watanabe, S., Nakagawa, M. & Ishitani, T. (2006). Low-voltage dark-field STEM imaging with optimum detection angle. Microsc Microanal 12(Suppl 2), 13681369.
Probst, C., Demers, H. & Gauvin, R. (2012). Spatial resolution optimization of backscattered electron images using Monte Carlo simulation. Microsc Microanal 18(3), 628637.
Reimer, L. (1998). Scanning Electron Microscopy—Physics of Image Formation and Microanalysis. Berlin, New York: Springer.
Reimer, L. & Kohl, H. (2008). Specimen damage by electron irradiation. In Transmission Electron Microscopy: Physics of Image Formation, Reimer, L. (Ed.), pp. 459490. Berlin, New York: Springer.
Rose, A. (1948). Television pickup tubes and the problem of noise. Adv Electron 1, 131166.
Soong, C., Woo, P. & Hoyle, D. (2012). Contamination cleaning of TEM/SEM samples with the ZONE cleaner. Microsc Today 20(6), 4448.
Sunaoshi, T., Orai, Y., Ito, H. & Ogashiwa, T. (2012). 30 kV STEM imaging with lattice resolution using a high resolution cold FE-SEM. Available at
Sussman, M. & Demopoulos, G.P. (2012). Novel fabrication of highly conductive titania/carbon electrodes for lithium-ion batteries and supercapacitors. ECS Meeting Abstracts, Honolulu, Hawaï PRIME 2012, p. 653.
Thong, J.T.L., Sim, K.S. & Phang, J.C.H. (2001). Single-image signal-to-noise ratio estimation. Scanning 23, 328336.
Trimby, P.W. (2012). Orientation mapping of nanostructured materials using transmission Kikuchi diffraction in the scanning electron microscope. Ultramicroscopy 120, 1624.
Van Ngo, V., Hernandez, M., Roth, B. & Joy, D.C. (2007). STEM imaging of lattice fringes and beyond in a UHR in-lens field-emission SEM. Microsc Today 15(2), 1216.
Yu, Z., Muller, D.A. & Silcox, J. (2008). Effects of specimen tilt in ADF-STEM imaging of a-Si/c-Si interfaces. Ultramicroscopy 108(5), 494501.


Type Description Title
Supplementary materials

Brodusch Supplementary Material
Supplementary Material

 PDF (452 KB)
452 KB

Dark-Field Imaging of Thin Specimens with a Forescatter Electron Detector at Low Accelerating Voltage

  • Nicolas Brodusch (a1), Hendrix Demers (a1) and Raynald Gauvin (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed